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Foreword

LIKE OTHER UNIVERSITIES. THE MASSACHUSETTS INSTITI'TE 32N
Techuology findx it desirable from time to time to invite outmdexq 0
give lectures to its students. 1t is now more than ten years mé\ét» gne
sieh series of Jeetures, on eXperimental statistics, was gnen/at the
Institute by Mr. L. H. . Tippett, Statistician to the Fh‘l't’n-h Cotton
tndustry Resenrch Association.  This frst set of lectures Adus successful.
and we were happy to invite My, Tippett to give a gécond gronp on the
tenth anniversary of the first, that is. in the springs ‘of 1948,

# '

Another thing which we find desirable fron ‘K;I\l’lf‘ to time is to share
the benefits of such lectures with a wides .Iudltn(e We are therefore
happy that the contribution of Mr. 1ppett te this field now finds a
wider andience through the current pubh(‘&tmn by Williams and Norgate
Ltd., and John Witey & Sons, V‘.t'- m'e pleased to have been assoviated
with Mr. Tippett in the original wenture and glul that it has had this
outeome., N\

o 3
’\\\"' Jorx K. Brrcrarp
A\ Dean of Humanities
< "' Massachuseits Institute of Fechnology
tembyridge h'u-;\wﬁ Hsetts
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Preface

THIS BOOK 18 A “WRITE-UP" OF A COURSE OF LECTURES GIVEN AT
the Massachusetts Institute of Technology to a mixed audience cgn™
sisting of industrialists, some of whom had little more than a geyeral
appreciation of statistics, students, and practised statisticiang;, f\-’bﬂ}ing
largely in industry. 1 could not expeet to satisfy every member of
this aundience cowmpletely but hoped that almost everyout iot cnough
from the lectures to make him feel that he had nat M-iisted his time.
I offer this book to a wider audience in the same spirit.

The hook is perhaps best regarded as an introduetion and com-
panion to a systematic text-book or course of,'&hﬁ‘ly in applied statis-
ties. For the beginner I have tried to presgnt“the logic of the statis-
tical methods employed and of their dapplication to technological
problems. Parts of the book may bq;j‘('mnd difficult by the beginner,
but he should net linger over them @b a first reading; he should read
on and be content to achieve somesanderstanding of the gencral ideas,
For the student in full course particular attention is paid to the basic
assumptions and their im;g]@atiéns for the technologist, and to points
that arise in the practical dpplication of the methods, The cxposition
is developed from particular examples, and the developroent is more
through arithmetical procedures than through mathematical proafs, I
‘helieve that it js edsier for the technician to attain a “fecl” for the
subject by they"arithmetical method—tlie mathematics ean follow
later. B :t}ﬁa‘ method ean only be really successful if the student
works tfhf'augh the examples. They are treated as problems in toch-
nolqg:(f as well as in statistics, .

“Sonte of the data for the examples have been taken from other pub-
l}aéions, which are fully specified; special mention should be made
of Statistical Methods in Industry (published by the British Tron and
Steel Federation), which has been niuch drawn upon for data. I cor-
diadly thank the various authors and publishers for permission fo use
them. Other data have arisen in the course of my work at the Shirley
Institute, Manchester, England; T thank those colleagues who have
co-operated in producing these data and the Director of the British

Vil
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Cotton Industry Research Association for allowing me ta use them.
I am grateful to Professor Harold A. Freeman for seeing this book
through the press and to Mr. Louis C. Young for reading the proofs,
' L IL C T
September, 1850
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aspects, fechnical and statistical.

PART I. THE ROUTINE CONTROL OF QUALITY

Chapter 1, THE MEASUREMENT OF QUALITY

The control of quality presupposes its measurement. This has by&

O\
Technical Measures of Quality )

We_understand by quality any characteristic of the ptoducts of a
factory, of intermediate products, or of the raw materigl that. is of

interest. It may be a quality in the popular seh&& 'bf the term-—

certain value, or it may be something that/4e\undesirable such as the
appearance of a flaw; it may be deseribéd'ciualitat-ive]y or in terms
of & numerical measure, o\ -

The specification and measurement of the quality of individual
things is entirely s technical problem. Some characteristics, like the
dimensions of machined parts, Cam: be directly measured and their
measures directly interpreted™ The designer knows and can say how
big the parts must be, they can be readily measured by gauges.
Other qualities are harder to define or can not be measured quickly or
eheaply enough forpurposes of production. For example, durability in

_use is usuaily a eefaplex quality depending on the type of experience

the article hasffoindergo. The experience may be made up of shocks,
abrasion, \tﬁ)‘r\afion, corrogion, and so on, each element being deserib-
able by aange of forces, frequencies, and so on, and the elements being
ecombinat in certain proportions. Even if in use all the articles of a

ivefn\kind undergo tlhie same expericnce it is very hard to devise a
lgﬁbo‘ratory test to measure the corresponding durability precisely, and
if the experience in use varies from one article to another the case is
almost hopeless. In circumstances like these laboratory tests are de-
vised, the results of which arc presumed fo be approximately related to
the desired quality. However, all too often such tests sre chosen with-
out adequate investigation, the presumption is made all too easily, and
the technician is unable to state what values of test resulis correspond

to satisfactory performance. The technieal problem of devising good
: 1



2 THE MEASUREMENT OF QUALITY

megsures is often exceedingly diffieult, and the technician has to flo the
best he can in the eircumstances; but the methods of control described
herein are cffective only if the measure of quality is technically suit-
able. The technician must be able to state precisely what he requires

- before the statistician can say precisely what to do. We shall assiine

that the technical part of the problem is solved.

Fi-equency Distribution A~
When articles are mass-produeed, it is not practicable to dedliwith
individuals. From the individual measurements we needs tohevolive

measures of the quality of the bulk; and this is where the statistician
enters the field, A\

Consider the data in Table I They are the rcsultg.fof tests of count
(& measure of fineness, being the number of hanleﬁ‘nf 840 yards per
pound} made on 200 test specimens {“skeins” gr¥leas™) taken from a
batch of & certain cotion yarn L. From the Stgztistical viewpoint they

TABLE I\~

AN\
Counr Mzasugep on SinaLe LEks oF CorroN Yarw L

366 1381 | 350 | 373 | 36%% 397 37.9 | 378 | 382 | 367
385 | 376 | 378 | 383 386 | 362 | 378 | 373 | 874 35.4
351 1 879 | 360 | 382.0 %g9 984 | 351 | 362 | 364 | 369
373 | 3.9 | 265 36IN] 383 | 286 ! 354 | a73 37 | 373
)

64| 366 | 3nANIT2 | 388 | 354 358 [ 389 | 372 | a7n
383 | 374 333 I"384 | 372 | 359 365 | 300 | 365 | 380
87.2 | 354 1,996 | 306 | are 362 | 374 | 372 | 366 | 374
366 | 3850881 | 375 | 364 375 | 362 | 380 | 361 | aro
N
B0 1 B8 389 | 360 | 35, 384 4 349 | 370 | 364 | 371
8.7 IN363 1 373 | m75 | a7y 358 | 370 | 370 | 377 | ms
BT N381 | 364 | 383 873 | 377 | 373 | 360 | 350 38.4
3R] 350 | 379 W2 1376 | 382 | 361 | 477 36.3 | 36.1

1361 | 378 87.2 . 382 | 308 37.3 371 378 | 380D 36.3
37.1 | 383 | 73 373 | 375 36.6 36.8 | 372 36.7 37.8
36.5 | 370 366 | 382 | 3ge 37.6 36.2 358 [ 36.2 [ 381
364 1 882 | g73 37.2 | 375 378 | 8.5 37.9 37.4 36.5

g:g ;7‘0 370 | 378 | 381 356 | 375 | 382 | 354 ars

305 3;,6 387 | 380 | 372 375 1 arz | s79 37.2 | 377
. & 1376 1 384 371 366 | 374 | 33 371 | 378

370 | 372 | arg 375 | 313 | 37 . .

. 37.3 358 | 373 36.9




FREQUEXNCY DISTRIBUTICN 3

might just as' well be a dimension of 200 mass-prodizced parts, the life
or efficiency of 200 electric lamps, or the strengths of 200 test speeimens
of steel. In statistical language the leas of Table T are termed indi-
viduals. The count is the quality of the individual lea; the problem is
how to specify the quality of the batch as a whole.
You will notice that count varies widely—from 34.9 to 39.5—and
that the order of the results has no apparent significance; large values
are indiscriminately followed by small, medium, or large values. In
order to see the data as a whole we carry out two processes. We put,
the results into an order and summarise them. In order of magmtude
the values arc O\

"\
349 | 3.0 350 351 351 351 352 354 354 354\, ...
372 312 372 873 37.3 373 373 373 373 8%8
386 387 387 388 389 | 30.0 [ 305 306  30.6/),30.8

the first row giving the first ten, the second row ten frorii‘\n'ear the centre
of the range, and the third row the last ten. We notice that the values
tend to be spread out at the extremes of the aéﬁ\eE, quite large gaps
oecurring sometimes hetween one value and, t«i\s next (e.g., 39.0 is fol-
lowed by 39.5}, whereas towards the eentre® thé values tend to be more
bunched, the same value cceurring magly times and no gap between
consecutive values exceeding 0.] (eg, the last 37.2 is followed by
37.3). We see this more clearly lf we summarise by ignoring small
changes in the value; after all, compared with a variation extending
from 34.9 to 39.6, it does nobdiuch matter whether any given value is,
say, 35.4 or 33.5 or 35.3, (Actordingly we may divide the whole range
of variation into subsranges of 0.5 count, letting the first boundary
separate 34.9 from 35.0°by putfing it at 34.95, putting the second at
35.45, and so onj’sdme of these houndaries are marked in the above
series. If this zs\dom for the whole series and the numbers of valucs
between the\Qaunuarles are counted and recorded, a frequency table as
shown ny T\b]c I1 regults, This is a tabular representation of a fre-
quene y\dtsfmbutwn As an alternative to ordering the values, a blank
furfiNliKe Table IT, without the frequencies, can be made and a det or
stroke be put opposite the appropriate sub-range for each value in
Table 1. The dots or strokes can then be counted to give the fre-
quencies. If you are not already familiar with frequency distributions
you should do this, because you will gradually get the “feeling” of a
distribution as the dets pile up.

The distribution may be represented graphicaily in several ways,
one of the best of which is shown in Fig. 1 for the distribution of Table
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THE MEASUREMENT OF QUALITY

' TABLE 1I

Frequavncy Tasne or Counrt, Yann £,

Boundaries of Froquency
Sub-ranges (Count} of Values
34.45-34,05 1
34.95-35.45 Y O
35.45-35.06 6 A
35.95-86.45 25 ~\ M
36.45-36 95 27 @)
36.95-37.45 52 ,.I:K :
37.45-37.95 38 O ?
37.95-38.45 oL
38.45-38.95 7 \,
38,95-39.45 ®
39.45-30.85 o
$
_.!—Q,_.___
Total (, 200
{‘ ’V
N
o
' Y T ;
100 (- S ]
N\
- o
= &
ool L\ i
= p.\ i
L D>
gﬂ t\t?,:s.l
Feol, O
= £ EE— -]
2 { \{,l
EN
Tl 4
z
=
2
g 20
2 _
o 35 ] Y | l'
36 37 38 33 a0
Count

I, 3,



FREQUENCY DISTRIBUTION ]

. II. There each column is proportional in area o the frequency in the
sub-range represented by the values of eount marked by its boundaries,
This is a histogram, which is a particular form of & frequency diagram,
and from it we see clearly how the values of yarn count are distributed, .
few being at the extremes, and most being towards the gentre of the

Frequency scale I:l =01
1 I | 3

I i : i H 1 ] I I i

Sample N\
100

3 Infinite
1260 N sample

1 1 l 1 1 1 [ 1 L

-4 -2 0N 2 3 4 -4 =2 01 2 3 4
) Scale of X
~\ Fic. 2.

total range. %‘iﬁ:’distribution represents fully the results of Table 1,
and no waviflg'of s statistieal wand can tell us anything more about
them [pyofxﬁ’ded their order is random in Table I).

Yo'usjvﬂl notice that the outline of the diagram is somewhat irregular
as wallas step-like, and this, experience suggests, is because there are
only 200 results instead of several thousands or millions. Statistical
methods are based on the concept of a distribution of an exceedingly
large nuraber of observations, which the statistician terms an infinite
pvopulation. Figure 2 shows how that concept arises. The data were
artificially construeted to measured values of an unspecified variable,
X. Samples of 100, 400, 1200, 2400, and 10,000 readings respectively
were taken, and the eorresponding histograms are shown in Fig. 2. For
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the sample of 100 the steps are wide and irregular; for that of 400 the
cutline is more regular; and, as the size of the sample Increases, it is
appropriate to use narrower sub-ranges, and the outline becomes
smoother and more regular. We can imagine that, if the sample size
could be inereased indefinitely, the outline of the histogram would
merge into the smooth curve shown in Fig. 2 for an “infinite sample.”
This is the frequency curve of the infinite population and is assumed 1o
bhe substantially the result that would be obtained if all the articles in
a mass-produced bulk or lot were tested, the very large numbef™Sn a
buik being to all praetical intents and purposes equivalent to\infinity,
It is the popuiation or lot we are interested in describing a;@f‘st‘hdying,
and we regard any finite number of individuals, as usedin Table I
and Fig. 1, as representing it approximately; the repfésentative finite
number is termed the sample. Sometimes we may ase a saraple with
so few individuals that the idea of representingthem by a frequency

- distribution seems to be ludierous, or we may\represent the data by an

average of one sort or another; but evenjin’these circumstances we
must always think of the fuil frequenay, distribution of the infinite
population as Iying behind the representation, hawever inadequate that
representation may be. o\ ¢

The form of distribution repzesented roughly in Fig. 1 and ideally by
the smooth curve in Fig. 2 is j{fery comrmonly encountered. The rise to
the hump at the centre of the'total range shows whereabouts the values
tend to be concentrated; the tailing off towards the extremes shows the
extent of the variation hnd that the farther the values deviate from the
centre the fewer do they become; and the symmetry shows that the
tendency to yariation is the same above and below the centre. The
smooth curvelof Fig. 2 is termed the Gaussian or Normal distribution
curve, s}ﬂd\tm it is based the statistical theory we shall use. When the .
dlsm@;{ﬁbn is of this form, there are only two characteristics to notice:
the(Gentral value about which the resulis tend to be concentrated and

\th& extent of the “spread” or variation.
N\ If a distribution differs from the Normal form, some of the methods

de.fscril;ed herein do not apply and special methods have to be used, but
this does not often happen.

Bummary Statistical Measures

We always thiok of the quality of masses of things, or populations

of individual.s, ::m terms of frequency distributions; but we seldom
use the full distribution in routine control.

: We use statistical measures
that summarise the information given by

2 distribution. The most
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commonly used measures deseribe (a) the central value around which
the individual values are grouped and .about which they are seat-
tered, (b) the “spread’” or degree of variation, and (¢} the fraetion
of individuals lying between certain limits of the variable.

The Mean. The central value is almost always represented by the
ordinary average or arithmetic mean, which for the bulk or population
is denoted by the symbol X', the value estimated from a single sample
being dencted by X, or from a combination of several samples, by X.

The Standard Deviation. The degree of variation is deseribed by a,
number of alternative measures of which the most fundamental from
the standpoint of statistical theory is the standard deviation. Tt 'n}ay
be caleulated by subtracting the arithmetic mean from each ¥alue in
the sample In turn, squaring and adding the resulting differendes, divid-
ing the sum of the squared differences by the number of "{)bservations,
and extracting the square root. It is represented by the ‘Greek letter
o, and for a sample of sizc n observations of the variable X it may be
defined algebraically by the equation Ny

S—— ”\ ;

f/z:(X - O
AY AR

~

g = (L
where X is the arithmetic mean and.Zmeans “sum the quantity for the
n values of X.” It can be seen infa"general way that for a large degree
of variation the differences (X~ X) are large and hence 50 is 0. As
approaches the number in ghe.bulk or population (i.e., infinity), ¢ ap-
proaches the standard detabtion for the bulk or population, which js
represented by the symbol'e’.

For the count of yarirZL of Table I and Fig: 1, the mean X is 37.22 and
the standard deviation o is 0.93. The values of count that are one
standard devi’a.tig}t"above and below the mean are 38.15 and 36.29, and
reference tq‘IQg." 1 will show where these values come in the total spread;
there is ‘cprﬁidemble vatiation outside these limits. Values at two
standasthideviations above and below the mean are 39.08 and 35.36,
and Fig’ 1 shows that between them is contained most of the variation.
Valtiés at three standard deviations above and below the mean, 40.01
and 34.43, contain all the variation. It is by this kind of argument that
the significance of the standard deviation as s measure of variation
comes fo be appreeiated. '

This appreeiation can be cast in a more general form if we assume a
form for the population frequency distribution, and we shall assume
the Normal form shown i Fig. 3. This is drawn on the same pattern

B
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as Fig, 1, with the variable X represented along the abscissa and 5 fre-
quency density, or frequeney per unit range of X, represented along the
ordinate, so that frequencies are represented by areas. It is convenient
to represent proportionate frequencies in this way, so that the total
ares. under the curve is unity and the fraction of the area contained
between any iwo ordinates is the fraction of the total observations
having values between those corresponding to the two ordinates. in

Frequency per unit range of X —=

—lr g pe— g o

Q’Uj{:}f‘ X=X+t
Fa " Fre. 3.
:”“\
¥ig. 3, the central ox{iéa"f;e is drawn at X', the mean value of X , and
there is an ondinatgﬁram at X/ + &’ (i.e., at a vahie of X greater than
the mean by { timles ¢'). The shaded area to the right of this second
o‘rdinate iz dpn@t\ed by & and is proportional to the frequency of observa-
tions havix{g;' alues greater thap X' + t¢’. Sinece the curve is sym-

met-riealxth'e area to the left of a corresponding ordinate drawn at
X' —da'Nis also a.

d There are very full tables showing the relationship
t{ejs\'i:i?eén tand & for the Normal distribution, and a few important results
\’"ﬁ}'e i Table ITE.

TABLE III
t 1 9 3
o 0.159 0.023 0.0013




. SUMMARY STATISTICAL MEASURES g

Theorstically the Normal distribution extends to infinity in both
directions of X, s0 that for no value of { is a absolutely zero. That
would be an absurd result from a praetical poini of view were it not
that, for large values of {, o becomes very small. Fori = 3, & = 00013,
so that 0.0026, or 2.6 in a thousand of the values, are beyond limits
set at three times the standard deviation above and below the mean,
the remaining 997.4 in a thousand being contained within those limits,
Thus for most practical purposes a range of six times the standard
devistion may be regarded as just about containing all the vahies in an
large bullk. The lower half of Table I1I is useful where « has some simple
value and the corresponding value of ¢ is required. O\

The Range. So far the standard deviation as caleulated from(slarze
number of observations has been described, but often in practiee there
is only a small numbear, or a collection of groups of small numbers. The
standard deviation may then be calculated for cach sample according
to equation (1), and the values of ¢ averaged to givegybuft this is related
in a complicated way to the population value ¢, )33 more convenient
{and, if the number per sample is less than 20, &‘hivisabic) to use a3 a
measure of variation the mean range, denatéd)by the symbol E. For
example, the rosults of Table I are printed)in groups of four and the
ranges, being the differences between the highest and lowest values in
the sub-ranges, are (reading dowq.ft;ﬁe columns) 3.85 — 3.51 = (.34,
3.83 — 3.64 = 0,19, and so on; these are the 50 individual ranges R,
and their average & is 1.89. £

The mean range is a copvweénient measure, and it is much used, but
1t ghould be handled ¢ Muily. Other things being equal, it-depends
on the number of ch3ervations per sample, which must therefore be
specified. If a papGlation of observations is distributed Normally, the
standard deviatidnealculated aceording to equation (1} {n very large)
and the mean-dnge in a very large number of samples drawn at random
are relate@\}i“t}le way shown in Table IV. For the count of yarn L,

*

N TABLE 1V

e Lo

ES

Nvymber in sample 2 3 4 5 10

1' Mean range = standard devistion

| &+ 1.128 1.693 2.056 2.326 3.078
|

R/5 = 1.89/0.93 = 2.03, which is reasonabty close to the ratio of popula-
tion values in Table IV for samples of 4. The assumption of Normality
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is not very important practically, as the relationships are not very differ-
ent from those given in Table IV even when the departures from Nor-
mality are quite large. But the proviso “drawn at randem’ s im port:.ar{t‘

The Fraction Defective. Often the technician is not interested in
the whole frequency distribution of values or in any measure of central
tendency or variation; he merely wants to control the proportion of
values below a certain limit, above a certain limit, or between two
limits, The manufacturer of washers made to specified toleranées of
thickness is usually concerned only with the proportion having thick-
nesses outside the folerance limits; and the “guality” of & ‘hatch of
electrical insulators may-be the proportion that break downudt or below
& certain specified voltage. This proportion is termedithe fraction de-
fective. It is represented by the symbol p’ when’ determined for a
population and by p for a sample,

The fraction defective according to any speciffed limit or limits can
be deduced from a full frequency distribution™of measured values, but
In routine control it wil] usually be deterrdinéd by some siinplified pro-
cedure such as go, No-go gauges make'possible. Statistically the frac-
tion defective and the fraction not defgctive are equivalent, and indeed
the same methods of expression_and analysis apply to the fraction of
individuals in a population haing any characteristic, good (from the
teehnical point, of view) of“bad. Some more general term for this
fraction would be preferefble, but the qualifying term “defective” is
now wel] established iy uality control, and we shall use it, but vou
must remember that statistically it may be interpreted in the widest
possible way. The, fraction is often expressed as a percentage, and you
should remember that we are here coneerned with fractions or per-
centages of{n.dependent individuals; quantities sych as a percentage of
ash in ceallare measurable quantities denoted by X,

If tl:kxﬁ‘action defective ig defined
tit-y}t}ist.ributed Normally, it ja
dediation, o', and the limits X

by limits of some measurable quan-
related to the mean X', the standard

. + Lo according to Fig. 8 and Table | 11,
(T to one of the fuller tableg of which Table IIT is an extract. This

1'e51_11t has practical use in setting design tolerances and investigating
their effects, ag will be illustrated in the following example based on a
Paper by Mr. Edmond E. Bates*

A certain shaft had to be made to a cert
of O.QOO and —0.001 inch, and .45 of thos
cutside those limits, Was this distressing]

* The Fron Age, Juiy 3, 1847, p, 58.

ain diameter with tolerances
e made were defective, being
¥ high fraction defective due
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to the general variability of the working of the lathe, or wag it due to
things ocecasionally going wrong that could he corrected by better
supervision and econtrol by the operator? The supervisor of the shop
believed the seeond alternative, but it is a general expericnee that lathes
do produce diameters with an uncontrollable variation that is char-
acteristic of the machine in its particular state of repair and main-
tenance, and often this variation is distributed approximately Nor-
‘mally. What would be the fraction defective if this were true of our
lathe? ’
Measurements on 12 samples of 5 shafts gave a mean range,of
0.00137 inch, leading to an estimate for the standard deviatidivof
0.00137/2. 326 = 0.00059 inch (see Table IV). The most favourable
machine setting would produce a mean diameter 0.0605~ inth less
than the specified diameter, so that the tolerance hz:mts Would be at
0.0005 inch above and below the mean and ¢ (see. Fig 3} would be
0.0005,/0.00059 = 0.85. From Table III we see that\for the Normal
distribution the corresponding « is grester thz@n\\OTIEQ, and the full
tables show it to be very near 0.20. Thus, gn ‘the “Normal general
variation’ theory, the fraction defective wonldibe 0.40, which is reason-
ably near the observed fraction of 0.45x ‘Since the 5 shafte in each
sample were made consecutively, theirs Tangc messured a general varia-
tion that is scarcely controllable, angd 3 was guggested that the machine
should be repaired. This was '.{ﬁpﬁarently reluctantly) agreed to by
the supervisor, und the standard deviation was reduced to & value that
is not stated but appears (ffom some graphs in the paper) to be about
0.00024 ineh. This wouf&\gwe a value of ¢ of 0.0005,/0.00024 = 2 (ap-
prox.) with about 5 peryeent defectives (see Table I1T}. This was an
improvement, buf\alas not good enough, since inevitable changes in
the mean diameter‘due to tool wear add to the defectives. Attempts
were made Qséduce the variability further, but this could only he done
by reducing\t e speed, which was unacceptable to the management.
Attentli)n was then pald to the possibility of inereasing the tolerance
range YThe shaft had to work in a ring, and the designer had specified
théélerances such that there would be sbsolutely no misfits. But, if
the variation was Normal, the fraction of shafts and rings at the ex-
tremeés of diameter was small, and the fraction of misfits in the
assembly of shafts and rings taken at random, owing to large shafts
being matched with small rings and vice-versa, was smaller. For
example, if according to the strict telerances and the variability of
manufacture there were, say, 0.05 defective shafts and 0.01 defcctive
rings, the fraetion of defective assernblies was only 0.05 ¢ 0.01 =
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0.0005, and, if such a small fraction was acceptable, the tolerance
limits for the shafts, say, could be relaxed so that most of the 0.05
previously rejected eould be passed forward as non-defeetive. A rcord-
ing to Mr. Bates, an acceptable scheme was prepared along these lines,
with relaxed tolerances (and the congequent reduction in manufacturing
costs), to give a caleulated fraction of defective assemblics of only 4'in
1060,
N .\

For an investigation such as that Just described we need to }m{:w the
fraction defective for various values of the standard dq\:'@l?i’@n and
tolerance Hmits, and in order to determine this directly frotw’the meas-
urements several hundred shafts and rings would havedo%be measured
for each frequency distribution. In fact, the results geported by Mr.
Bates were obtained from measurements on only210 paris altogether,
and this was made possible only by estimatin standard deviations and
assuming the Normal distribution. The estimetes must have been sub-
Ject to substantial errors, sinee they were Haséd on only 30 or 60 meus-
urements per distribution, and the distributions were only approxi-
mately Normal, at best. However, gréat precision was not required,
and it would not have Mattered @ach if the final fraction of mishit
assemblies turned out to be 2 i3y or even 5 or 6, per thousand instead
of the theorctically calculated ™y,

It is clear that in cirewhstances like those just exemplified, the
stand_ard deviation of the articles produced by a machine over a short
time is an importaﬁt\\slfaract-eristie that indicates for what tolerance
limits of manufacttre the machine is suitable, It has been found good,
in & large shop o know the standard deviation for eacly machine and
to allocate .j&bs'with various tolerance limits accordingly.

Other Measures, There are other measures of
tions ﬂist"may be used in wnugnal eircums
t.ribujtion is asyminetrica) in shape},

 noip

O

frequency distribu-
tances (e.g., when the dis-
We need not consider them
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The methaods of quality eontrol with which we shall deal have been
developad primarily to meet the needs of the mass production of dis-
crete articles, although we shall see that they can be adapied to meet
other needs.

The ideal of mass production is to know and maintain at appmpna‘t@
levels all the factors that determine quality so that all the artlcle&pro-
dueed have the required qualities. According to this ideal, for eximple,
g spinner of cotton yarn would supply the correct staple ancf growth of
raw cotton, would subject 1(;Aﬂ 1o the same processing K}th earefully
defined drafts, roller settmgs, gpindle speeds, and &d\gn, and would
cxpect every bobbin of yarn produced to have th\e vequired fineness,

" strength, cleanliness, and so on.

In practice, however, it is either 1mposszble\} or lmpracticable, or
uneconomic to control all the conditions Qreelsely Raw materials,
partieularly if they are of biological q(i‘gi‘n, ean not be made uniforn.
Processes have to be controlled by human operators, and it is imprac-
ticable to exercise supervision clo;e euough to eliminate the effects of
the human factor entirely. M:-rchmes and tools wear, and it is uneco-
nomic to use them only for th&t brief period between: the completion of
ruphing in and the appe\%‘r\mce of the first signs of slight wear, All
these gources of variatiun are natural fo the process, and sinee we have
to put up with them ape ‘may describe the resuiting variations in quality

as allowabie. Homeflmes supcr-imposed on these arc variations that

oceur when thu{gs oo wrong or when there is some change in conditions
that can bejdentified and coutrolled. We may term these preventable
variations, \The aim of the statistical methods of quality control is to

separatéallowable from preventable variations so that we may know

FHen\eduses of preventable variations, which Dr. Shewhart has termed
asstgnable causes, are in operalidis—Tn this and the next two chapters
attention will be confined to qualities that are measurable, not to those
that are merely expressible as a fraction defective, -

Statistical Conirol

First we must conceptually divide the production of a factory mfo

sections in such a way that the system of causes of variation remains
13
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constant for the production of the articles of any one .sc-ction. Then
only allowable variations oceur within a section, and assigna ble causes,
if they exist, produce variations only from one section to another.
Sections so formed are termed rational sub-groups. The most common
“rational sub-group is the product of one machine or & homog.eneous
group of machines for a short time of one or two hours or a shift, de-

Grand 5
average N\
N
— 9 .\" ih
Control correct \

W
7Ny

_pﬁﬂ‘a‘_ 1'“ ‘ ", _* :‘ .44:"

Mean out of control

7

Quality —=
Spacification levels

e
\\ All features out of control

W\ Time ———a=
) .i\ 4 Fra. 4.
pendi&'@n‘ the rate of production, the time being at least short enough
to permit of no sensible change in the system of causes affecting quality.
Lipthen, very large numbers of articles are tested or measured, the
o (Ftsults may be as represented in Fig. 4,

N/ For the first row in this diagram, a line is drawn to represent the
specification level of some quality of the artieles, and the allowable
variations are represented by the small black frequency distributions
shown sideways (as compared with the disposition in Figs. 1 to 3).
At each time of testing, the distribution is cxactly the same and is
centred on the specification level, and 2 frequency distribution ob-
tained by pooling results from many times of testing is also the same.
The production so represented is said to be statistically in control.



THE CONTROL CHART. CONTROL LIMITS 15

For the seeond row in Fig 4, the specificafion level iz shown as
before and the frequency distributions at different times are of the
same shape and spread but are centred on different levels, following the
dotted line. The frequency distribution.of the pooled resulis from
several times of festing will show more spread than the constituent
distribufions and may alsc he different in shape. That represents a
gsimple type of lack of control, and the changes in level are the effects
of the assignable causes.

The third row of Fig. 4 shows a second type of lack of econtrol, where,
the distributions are ail centred on the specification level and have {he
same shape but vary in spread, the composite distribution for pdoled
results having the same shape and centre but a spread interpiediste
between those of the constituent distributions. ' ~A y

In the fourth row of Fig, 4, everything varies from time<o time—the
level, the spread, and the shape of the distribution, and\the composite
distribution is related to its constituents in a wap.that can not be
simply deseribed; the specifieation level serves ;quy to show the aim
and represents no feature of the performancga'\\

X
Q"

The Control Chart. Contrel Limits

In order to investigate the state of. jé'ont-rol for a process we use,
instead of a chart of frequency distribtttions as shown in Fig. 4, a chart
in which one or more of the statistieal measures is plotted for the suec-
cessive Tational sub-groups. Af\the result for each sub-group is based
on a very large number o'f;tét-s and the proeess is in the state shown
in the top row of Fig. 4'\{{\@:', in eontrol), each measure is constant and
the points fall substantizlly on a horizontal straight line, If the process
is out of control, thig’points for either the mean or one of the measures
of variability, pr\bbth, move up and down on the chart. In practice,
however, thesmumber of observations per sub-group is not large, since
for reason\s%("cconomy we have to use relatively small samples. Tt is
a matter ‘oF experience that the means, standard deviations, and ranges
of gllcé‘eééive samples from the same bulk vary, and so, even if a process
i€in kontrol, the points on a chart will move up and down on aceount
of sampling variations. We need some way of determining and repre-
senting the extent of sampling variations so that they can be distin-
guished from the results of variations in the process due to lack of
control, Let ug make a chart for a process that i in control and see
what happens.

The results for Table I have been well mixed and are in random
order, so that the successive groups of 4 may be regarded as small
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samples from sub-groups of & process that is in control. There are
0 samples, and the individual results are plotted in the upper part of
Fig. 5 as small dots, the four dots for each sample being thistributed
in a line along the abscissa. The 200 points are piled into the frequency
distribution shown on its side at the end of the chart, and sutlined in
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. (ts" imagined Popuiation form by the thin line,

\ . , This distribution is
ythat of Fig. 1 in o slightly differe

nt form, the smooth curve being the

HI1bu 8 mean and standard deviation as the
actual distribution. The beavy dots represent the means of the samples

of 4, and they vary, but not so much g do the individual values. They
have, in Fig. 5, been formed intg a frequency distribution of means,
no‘fvr} as & sampling distribution of the mean, the thick, smooth curve
outlining the tl?eomtical sampling distribution for a population of
12 a Narmal distribution centred on the same mean as
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the individual values, with a standard deviation equal to that of the
individual values divided by the square root of the number per sample.
The standard deviation of & sampling distribution of the mean is termed
the standard error of the mean, but, in spite of its speeial name, it ay
be interpreted in terme of proportionate freguencies like any other
standard deviation with the aid of Table III. Generally the standard
error of the rocan of random samples.of n cbservations is related to o,
the standard deviation of the population of individual values, by the
formula

a,!

£ N

Standard error of mean e '\, {2}‘
When we do not know the population value ¢’, we have to ,su};s‘ﬁitute
as an approximation the best value available, which for fhe count of
varn L is o = (.93, giving as an estimate of the standard error in samples
of 4 a4 yarn count of 0.465. The standard devistion efvthe 50 means
should not be very different from 0.465 {you may, eare to perform the
ealeulation). Likewise, as the centre of the sa p}ng distribution we
use the estimate X = 37.22, the double bar ] Smatmg that we have
taken the mean of the 50 sample means. _ \.

Tt is not convenient in routine quality entrol, however, to ealculate
the standard deviation of a lot of méans and .see whether the result
15 the same as that given by cquatz,on {(2). A betier way 18 to choose
limits of varistion in the saupple meaps that, under condifions of
statistical control, should be cx\oeeded by a certain smalil proportion of
the samples, and test if th &ut proportion of actual points shows varia-
tion outside those limit#, One set of limits commonly used is chosen
so that under condition¥ of statistical control 0.025 of the points lie
below the lower and0.025 above the upper limit, and from Table 11X
{p. 8) we see that these are ab 1.96 times the standard error above
and below th%mum For our data of Fig. 5, the grand mean is 37.22,
the standazg‘ error is 0.465, and the lirnits are at 37.22 £ 0.91 = 3813
and 3().3L *horizontsllirnés are drawn in Fig. 5 to represent these values,
Anbther pair of commonly used limits are the 0.001 limits at 3.09 times
the standard error from the grand mean {sce Table T11); these for our
cxample are at 37.22 4 1.44 = 38.66 and 35.78 and are reprcsented in
Fig. 5 by dotted lines.

You will note that these two sets of limits are almost at two and
three times the standard error from the mean. and some people prefer
to use those simple multiples, sometimes calling them “two- or three-
sigma” livgits, in this context meaning “standard ervor.” The cor-
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responding proportions are 0.023 instead of 0.025 and 0.0013 instead of
0001, Clearly this difference in practice is of no theoretical importance,

Now we would expect in the long run 0.5, or 21, in 50 of the sample
mean points in Fig. 5 to lie outside the mner limits; in fact 3 lie above
the upper limit, 1 below the lower, and 2 almost exactly on the lower,
The agreement is not bad, as these things go, the diserepancy being due
to the fact that we have a relatively small number of samples. The
theoretical proportions are expeeted to he satisfied closely onlygwhen
the number of samples is large. No sample mean points should fall
outside the outer limits, and none does, <\

A chart like that in the upper part of Fig. 5 is termedftluz control
chart of the mean. It is a form of presentation of datadfirst proposed
by Dr. Shewhart, and although {perhaps because) Wis simple it has
Proved a most valuable statistical tool. Essentighy it is a graph with

. the value of & varisble plotted along the ordinitsnd some designation

7

of the rational sub-group slong the abscisaa\\.‘lt may have a central
line corresponding to the heavy line in F{g 9, which may represent a
grand mean or a specification level; weshiall discuss this later. But a
control chart must also have so-called’control limits that under con-
ditions of control vontain 4 knownproportion of the points and so pro-
vide a criterion of what varlatighs in the sample means are allowable
and compatible with controlNand what variations indicate a lack of
control.  We shail diseysy later the principles by which particular
control limits are choseny

A control chart &{ﬁétﬁlcted after the manner of Fig. 5 is useful for
determining, aftér the event, whether g given set of data show lack
of control: Taybe of use during production, the chart is extended
along the ¢ a{x?s (which in such cageg usually represents time in some
form.], gn@ﬁoints are added one by one, samples being tested as pro-
ductlgl\‘?\-c‘:cceds. Then each point that falls within appropriate con-
;:l);s ll:i; C:itz tﬁk?; taask:;idence of a cm}tin‘uan‘ce of control; ff a pn_int
A8 outside ; 4% an carly indication of something going
\?v.-,.rong;, and Investigatory or corrective action ig taken. Even if control

nta _ all outside the limits, as we have
seen in Fig, 5,.and this procedyre will sometimes Jegd to unnecessary
action. Somelimes there may be 5

" : |18y be a real change in the produetion, and

e -next pont may remain within the limits, sq that necessary action
may be 1n1§sed. The control procedure is thus got, certain in its opera-
tion; but we sha) discuss all this later.

iy When adding the p(?ints_ to a control chart one at g time as produc-
10N proceeds, and taking or withholding action on the evidence of ¢ach
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point, it is appropriate to think not of the proportion outside the control
limits when the process is in contrel, but of the probability that an
individual will fall outside. This is a change in langnage correspond-
ing to a change in coneeption, but it involves no ehange in statistieal
procedure.

A companion to the control chart for the mean is that for the range,
as shown in the lower part of Fig. 5. Therc the 30 individual ranges
for the group of 4 in Table I have been plotted in an extended form
sgaingt the group or sample number and consolidated into the form of
a frequency distribution, the outline of which is represented bya
smooth eurve—the sampling distribution of the range. As thigeds, not
& Normal distribution, the mean range and standard deviati 1on ci‘ranges
do nof describe it sufficiently and the proporticnate flequenele‘- or
limits correspunding to various probability levels cagnet be deter-
mined from Table III. However, Dr. Dudding alid) Mr, Jemnett’s
novk, Quality Conirel Charts (BB, B00R), gives\for various group
ot sample sizes, imits sorresponding to probabilities"of 0,025 and 0.001,
For samples of 4 the limits corresponding to a}n robability of 0.025 arc
0.29 and 1.93 times the population mean{ ;;mge, and, for the data of
Table I which have a computed mean rainge of 1.89, the best estimate
we have of these limits is 0.55 and 3 84 they are marked by the con-
tinuous lines on the range chart nf Flg 5. The corresponding limits
for a probability level of 0.00Lare 0.10 and 2.57 times the mean range,
and for yarn L they are estlmated to be at 0.19 and 4.85, as shown by
the dotied lines on the 1 ggchart Two points of the 50 lie cutside the
inner limits and 1 poidt o the lower 0.025 limit, and 1 point in 50 lies
on the lower 0.001 hm;t “the agleemmt with theory for a range statisti-
eally in control i€ Bodd.

Some writcrs u§e three-sigma limits for the range as for the mean, in
spite of th\fﬁct that the sampling distribution of the range is not
Normal, T‘us procedure may be justified on the empirical ground that
1t worls; or on the miore theoretical ground that it gives 2 close enough
apbraXimation to the theoretical lhnits, It is necessary to know
“sigtha,” the standard crror of the range, and this has been tabulated
for different sizes of sample. For convenient use in quality control,
tables also give factors by which to multiply the mean range or the
standard deviation in order to obtain the three-sigma control lmits,
Yor small samples the lower limit would be at a negative value of the
range, which is dbsurd; in such instances the lower limit 12 eonven-
tionally put at zero. For samples of 4, the upper three-sigma limit ig
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2.28 times the mean range, which is between the 0.025 and 0.001 limits
(see, for example, Professor Grant’s Statistzcal Quality Clontrol).

Control charts may be formed of the standard deviation, which is
preferred to the range when the number of observations per sub-group
15 greater than 20 on the ground that the standard deviution is mare
likely to give early indication of any lack of control in the vartability,
and the superiority of the standard deviation in this respect increases
as the number of observations increases. You will find the tables for
making these charts in the text-books. \

Control charts can be made for other statistieal measureg™of popu-
lations, but the only one that is in commen use is the ccmﬁm?l'?éhart- of
the fraction defeetive; this will be discussed in Chapten&"}
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Chapter 3. PRACTICAL APPLICATION OF THE CONTROL
CHART PROCEDURE

The eomtrol ehart is a statistical tool, but quality control is & part
of technical management and, as T regard it, is a function related toss
routine production rather than to research and development. Statisti-
clans like myself arc apt to call the subject stafistical quality coutroly
hoping thereby to absolve themselves from the duty of consdering
management aspects, But, if the methods are to be useful,»fgehnical
managers have got to believe that they can be of use, toMe willing to
use them, and to know how to use them. N

In almost any factory the number of control chalt®’that could be
introduced is legion. Which of these are worthdntroducing? Under
what eircumstances are the various methods of g’(téhty control suitable?
How arc they to be used by management inthe factory routine? What
results come from their use? These kinds/of questions have to be
answered by someone. N

The following discussion will giveslittle specific guidance—it con-
tains vague generalitics rather tham ®brass tacks.” A comiplete seience
of quality eontrol has yet to heldeveloped. As a consequence the tech-
nical manager must learn, ﬁ);\tlse the methods by trial: he must be
something of a pioneer, \l‘f’he is to achieve results, he must experi-
ment patiently and pefSisiently and must be prepared for the risk of
all experimental appivaches—the risk of failure. Nevertheless the
methods have hg}{sﬁccessful application in a wide variety of cireum-
stances, and efberprise in this direction is likely to be well rewarded in
one way orzatether.

Four ty ges of use of the control chart procedure will now be discussed.
~\’ ¢

Tra\'c“ing“ Causes of Variation
The first type of uses of the control chart is as an instrument of Q

investigation when a process is out of control, Tf the process is new,
all the conditions that affect quality may not be known or may not
have been brought under control; or, if & process is established, things
may go wrong. In either event it is helpful to know when and where
breventable variations are occurring, so that assignable causes can be
traced and eliminated.

21
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The procedure is to collect data for a number of sub-groups, say 50
or more, and form them into a control chart. The chart is then eon-
tinued with the control limits s0 calculated, points being added as pro-
duction proceeds. If a point falls outside the chosen control limits,
the assignable cause is sought and, if possible, eliminated. [If during
the investigation improvements are effected, a new chart with new

. limits is caleulated from a later set of data, and the process is repeated
until the chart shows that statistical control is established. This first
use for the control chart then ceases: it is for the managernert, to
maintain the conditions necessary for control {machine settingsMem-
perqturé, and g0 on). The chart shows when to look for &ssignable
eauses if the division into rational gub-groups is according t0 time, and
where if it is according to machines, operatives, batehek ‘of raw ma-
terial, or other manufacturing units. The mean charPis almost always
used in these circumstances, but it is usually desirdble to use also the
range chart. '

Sometimes the search, which tends to beNef a “trouble-shooting”
type, leads to the discovery of assignable dahses that can be eliminated
by the production people-—causes that\the production people often
elaim to have known about all the ime! Such a result shows quality
control at its most cbviously sucpeééful. Sometimes control can not be
established so easily, and the whole problem has to be referred to the

_Tesearch department or its “equivalent; then the statistical methods
dealt with in Part I1 coplgNinto their own, Sometimes the assignable
causes ¢an not be eli,r_(iin\tled and have to be accepted as part of the
process. In cottordefabric manufacture, for example, “piece” lengths
from different lodws and from different warps in the same loom are
probably out, a¥eontrol; yet, it is doubtful if all the causes are knewn,
and it is cettinly impracticable to control all of them. Even then,
how‘evez;,:{he knowledge given by eontrol charts may be useful as sug-
ges_tlfl Mes of research and giving a basis for a different division into
l‘ﬁ-tl’;qna sub-groups which include these unpreventable variations, if

" se0ntrol charts are required for one of the other uses mentioned below.
< Zk;rgzgﬁzei:l};i izszi%nalbll;a caquas can be eliminat_ed‘, not only_is the process
the variability within the oo s (67¢] Of quality often improves and
ment in qual}irt is lt1 l;.e rational Suh_-gmuP 18 reducefl. jI‘he smprove-
operated to bribr(lg th:; Iee ?pre C’wd,_SmCE e contro: ?wll alvays be
reduction in within-group varier g o, (et desired.  But any
Broup variability must be indirect and can oceur

only when a,ssign.able tauses of between-group variations happen also
to be causes of within-group variations,
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A controi chart does net purport to tell what assignable eauses are
operating, much less does it tell the remedy; nevertheless it may often
give useful indications. The pattern of points may give a clue to the
cause. The simplest example is in machining metal parts to required
dimensions, where a trend in the mean alone-indicates a change in
setting and a change in the variability sometimes indicates tool wear or
some mechanieal fault with the machine. I have heard of a girl, who is
not an engineer, in charge of the control charts in a wérkshop; she has
developed what seems to be an slmost uncanny flair for telling the
technieal people what is wrong from an examination of the chart.

It is always a matter of technical and managerial judgment to degide
how many control charts to keep—whether one for each machine or
operator—and how finely to divide the sub-groups, but for investiga-

. tional purposes & fairly high degree of detail is usually calléd for. The
inerease in expense that this entails is mitigated by the 'fa‘ct- that the
investigation is, or should be, of limited duration. ) '

Although there have been very many successiul applications of this
first use of quality control, there have also beer failures, and it would
be useful to know, generally, under what coh}itions guccess 1s o be
looked for. Obviously results will be .exﬁeéted only where lack of
cantrol 3 known to exist or is suspecteds Success is most likely to be
achieved where the process is fairly‘simple and assignable causes are
not too hard te find or too remote imhspace or time to be controlled. A
finished fabric, for example, isseveral months in process from the raw
cotton and goes through a.¥ery complex series of processes; clearly
there is not much hopg{f/finding in the earlier processes assign-
able causes of variatimehnat are detected only in the finished fabriec.
This is not to say, .\hc')w.ever, that control eharts have no use in such
‘eireumstances. . :

This use of, eal:n?ﬁrol charts is perhaps the most excifing of all the uses
and is the.?e‘usually illustrated in the case historics given in the
]iteraturei;.: owever, it is not the most important use.

2N
Refitine’ Control
- A¥second use of contro! charts is for the routine control of quality &
when the eonditions can not be determined and éontrolled @ priort, but
the products have to be tested and the process adjusted accerdingly.
In cotton spinning, for example, all conditions may be kept uniform as
far as practicable, and yet the yarn changes from time to time in count
or fineness, Accordingly yarn is tested periodically. If the tested
eount is within certain limits, no adjustment is made to the spinning

C



24 APPLICATION OF CONTROL CHART PROCEDURYE

machine; otherwise a pinion is changed to correct for the change in
count. This procedure is traditional in the cotton textile industry ang
Is very close to the contro] chart procedure.  Machine tools are sct in
somewhat the same way, the final adjustments being made after parts
have been measured. Sometines the raw materjuls of a process may be
tested, and the process may be adju&sted for cach bateh to give the
required quality in the produst,

In established processes of these kinds methods of control must have
been developed long before statistical quality control was thonght of,
but for efficient control it is nécessary to have not only adast resalt
but also a measure of itg preeision and a criterion for deciding what
variations to ignore and for what variations to mzdﬁe"mt,’rustments.
Buch a criterion is provided by the eontrol Hmitgs\but whether for
routine purposes a chart is better than records kg;i);*ih a book, or even
than unrecorded test results, is o matter fon special consideration by
each management concerned, Action is stereot¥ped, and 2 simple test-
ing and recording procedure should usuglly)suffice. It will depend on
speelal technical cireumstances, toa, sghether there shall be separate
contral for each machine or group cdpbrol, and whether the tests shall
be made frequently or infrequentiyiand at regular intervals or irregu-
larly as certain conditions, such.as'the batch of raw materials, change.

A special case of the sepoﬁﬂ' use of econtrol charts occurs when a
Process is non- or semiautdmatie and the quality depends on the
manipulation of an cpg{étor {e.z., on the speed or pressure with wlich
& handle is operate NJ A vontrol chart in an accessible position ean
help the operator touhaintain a uniform performance,

Quality Assuxén;:e

The t}’lirs[t-j'.pe of use of control charts i ound where perfect control
of'al thgfondlffwns for quality is attainable and has been attained and
evidence is required of the fact. Maint

UOUs tonseientious attention to machine settings, temperatures, clean-

( ?inéss, and so on, by operatives, machine fixers, and supervisors; and if
) they perform their work nothing should g0 wron

g But they are human;
vered by control charts;
rol given by q chart ean stimulate interest in
o veR AR of legitimate pride; and the knowledge that
quality ig being recorded cag stimulate conscientiousness. Control

zh?rts may b? uls\eml, £00, to the higher ranks of management ag their
1Y means of “keeping tahg” o' the qualj '

e quality prod y {: ,
Generally the amount of g Y produced by the factory

tall required will decrease as we go from the

mistakes can be made, and they can be disce
the visible evidence of cont
the matter and be g sOuree
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factory floor to the president’s office. In the factory it may be worth
keeping a sct of charts for the processes under cach superviser; the
factory manager or superintendent may require 2 set for each depart-
ment and produet; and the president may be content with a composite
chart summarising the quality of all products of the factory.

Another agent for whom control ehiarts may be useful merely as evi-
denee of control is the “consumer,” who may be an ultimate consumer,
anotlier manufacturer who uses the product of one factory as the raw
material of his own, or a department in the same fastory “consuming?’
the products of an earlier department in the production line. When-
ever material passes from one responsibility to another, or pasg’eéﬁ
stage beyond which faults can not be truced backwards, it i5 wise to
have an assurance of the quality. Commonly this is achieyed by in-
specting each bateh separately. This is often expensive if the control
is to be really effective; otherwise it is uncertain in it &ffects, leading
to the rejection of satisfactory batches and the accepfance of unsatis-
factory ones. If, however, the process is in conﬁrb}and the character-
isties of the product are known (usually the-tnedn and standard de-
viation or mean range of the quality), tha'bofisumer has as much in-
formation as he can possible have; apd;cﬁntrol charts provide that
information in the most economical way.' There is a marked tendency
for large consumers to accept the evidence of quality cuntrol given by
contrel charts in preference to batch-by-batch inspection.

Usually it is best for the pfoducer to keep these charts, for he is in
the hest position to choo c{he’rat.ional sub-groups. But, if this can not
be done, the consume, k.y find it useful to keep a sel of charts of
things from each sourde’ of supply, using some batching units ag sub-
groups; he will thihlave an assurance of eontrol where it exists and a
good basis for, ﬁ}{h{ing complaints when they are necessary.

The assughtec of control is required when a measure of variability is
used to relate toleranee limits to the fraction defective, as deseribed in
Cha-pt'en‘:}"(p, 10), for the ealeulations are valid only if the mesn and
vafiability are both in contrel. We shall describe in Chapter 5 how fo
dealMwith the situation when the mean is not (and need not be) in
control, bub eontrol of the variability is always essential.

We way extend the definition of “quality” to include indexes or
measures of operating performance, such as fuel or power consumption,
the proportion of time the machines are operating, and the numbers of
machine breakdowns; or even statistics of absenteelsm, sales, profits,
and so on. It is always possible to plot such data on time charts and
often to form rational sub-groups so that control limits can be fixed.
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SBuch an extension of definition thus considerably widens the use of
statistical “quality” centrol in management.

The same set of control charts may sometimes be put to the three
types of use mentioned so far. Charts used for the routine contrel of 4
process (the second use) can also provide evidence of contrel {the third
use), and charts used as evidenee also show when or where assipnable

" causes are operating (the first use), if they operate occasionally,

The control chart applies, par ezcellence, to continuous mass produc-
tion. Does it apply where therce are short runs? The first, (36 ean be
made where the quantity of production gives as few as 2008ub-groups.
The second and third uses can be profitable with sitch, shott runs if the
quality of the products of successive runs can be redideed to a conunen
measure. A machined dimension measured as ”a'\(’}éviation from the
specified dimension ean often be used in this wa¥/and the fraction de-
fective is a common meagure that is widelxused. Control eharts for
this quality will be deseribed in Chapter {3\ ’

Reconciliation of Design and M%n_ufég.;ue

The fourth type of use does‘g’o't really belong particularly to the
control chart procedure, hut, sinee 1t is usually regarded as an applica-
tion of quality control, this is\a convenient place to mention it. It is
exemplified in Chapter“l, where 5 knowledge of the variability of
articles turned by a lathe was used in specifying in the design toler-
ance limits that give'an adequate performance and vet could be held
In manufacturewithout producing an unduc fraction of defective ar-
ticles. Generally when products vary statistically, it is as necessary,
fUr._satisfa(;tnry design, to know the statistical characteristios of the
van_ation@sto know, say, the strength of the materials to be used; and,
convxsijy, tust as the required strength of the produet will somewhat
detefnine the materiais epeeified, so will the variability that is toler-
ableto the designer somewhat determine on which 1 achine articles wiil

d Hie made or which particylsr proeess wiki be used, if there is g choiee,
N\ Moreover the Ineasures of 'variability and o on have o meaning and
are not useful in this connection unless the qualities are stable—in

cont.rol: The contro} ehart npt only estabiishes this but also provides
the various measures required,

Administrative Detailg

There are a number of important admin

. : istrative and related details
that can only be mentioned here,

They are: the size and qualifications
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of the staff required for quality control; the precise definition of its
duties and responsibilities; its relation to the management and operat.
ing staff; the decision regarding which department should be responsible
for making tests; the placing of the charts; the “selling” of the idea of
quality control; the ensuring of co-operative action.

Q
Q&
\\
o\



Chapter 4. STATISTICAL AND TECHNICAL DETAILS IN
APPLYING THE CONTROL CHART PROGCEDURE

. The details in the design of control charts mist now be cpg:.s'{dcred.
Rational Sub-groups and Statistical Individuals \ O
According to our definition, the conceptual division ©Tthe products
of a factory into rational sub-groups must be so madedhat within each
sub~-group only allowable variations oceur, any Jréventable variation
due to assignable causcs being seen between subsgroups. The applica-
tion of this principle to particular cases reqiurés technieal knowledge
of likely kinds of causes, consideration of\the purpose for which the
coutrol chart is being made, good judgheént, and a clear head. It is
helpful £o have some preliminary ic‘iaaﬁof" whether any assignable causes
are likely to affect all parts of the Brocess equally; whether they are
likely to produce sudden chang»c:é:dr trends; and if the effects are sudden
whether they uccur'frequeut-lﬂ‘,’ or if they are trends whether they are
slow, m<
Generally the largep t]8 sub-group the more numerous are the classes
of variation inclut{e&ithin it, and the requirement for exciuding pre-
ventable variatiohs)sets an upper limit to the size, The lower himit is
set by considegations of economy. Each sub-group has to be sampled
or tested separately, and a statistiea! measure or set of measures has
to be ¢ wiited to form one or more points on a chart; elearly the fewer
the sybsproups the lower is the cost of testing, )
_ ’{”gf.l'.th‘is advice is very genera] and somewhat vague, but the follow-
~JBg particular example may be helpful. -

b - -
./ The mule is a machine used for spinning cotton yarn very mueh more

n Lancashire (England) than anywhere elsc in the world. Tt has
ahout. 1:200 spindleg all simultaneously spinning cops of vamn, each cop
containing some 700 to 2300 yards aceording to its szé and the Ane-
ness of the yarn, For testing purposes the yérn iz divided into lengths
of 120 yards, called leas, so that each cop contains from 6 to 20 leas.
?; &ai?illg)l[e of tl'le production, cops were taken, 1 rem 5 spindles of mule
Ta’bfc V- tlcl?: \‘:_:ze It&kcn from each cop, according to tle scheme of

' ® tepeated for mule 42, and for twenty-two others.

28
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TABLE V

Werenors oF Leas oF Mure-Setn Corron Yarw

|
! Spindle Meun Range Mean
Né“l“ (Cop) %"‘ Weight ?fe‘;gs‘)" Weight | (Spindle | Weight
v Ko. o ’ (Spindlez} | Mepns) {Bdules}
38 1 1 386 7 382.5 17.5 3810+ N\
g 879 .
E Y
2 1 360 1 369.5 N
370 K
3 1| 302 12 386 D
380 NS
4 1 s |18 380 N
ur H x'\\w
an ny
—_ _ ¥
5 1 387 0 B_n
2 387 Ly W
’ (S -
42 1 1 377 2% 380.5 a7 378.8
2 384 N
2 1 382 (N 15 389.5
2 397
“_; ¢ \‘ N/
3 1:~‘§7o 15 1 3625
; 2 w355 {
i
4 {?;“‘l 384 3 385.5
(N 2 sy
%‘w i ]
N\ 1 378 4 376
N 3 374
O

—
\‘md s0 on for 24 mules

The quantity tested was the lea weight (the units are not specified be-
cause they do not matter here). There are possible variations {a) be-
tween leas from the same top, (b) between cops from the same mule,
and ‘() between mules. The variations between mules are preventable
in routine production, and in an investigation made at one time each
mule could form # rational sub-group. The spindle variations can not
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be controlled in routine production since there are far top many
spindles to he treated mdividually, but we might study them ag a
research. project, perhaps using & control ehart for selecting 5 few
spindles giving high, medium, and low values, discovering thie causes
of those variations, and then eliminating or reducing them by tmproved
mule manufacture or improved control at the carlier process that makes
the “roving” frcm wiich the cotton yarn is spun. Then spindle varia-
tions would be formally preventable, and the cops would form separate
sub-groups. In such a research it would be well to use only oneSaiule
in order to avoid the confusion that would arise if mule variatibos were
superimposed. M/

"N\
N

Sometimes care is needed in the sub-division of thé Sb-group into
the ultimate statistioal individuals or elements, athdse variation is
measured by the standard deviation or mean rapgeiind whose number
™ ocours in the denominator of equation (2). When the things under
investigation gre mass-produced articles, eMarticles seem obviously
to be the statistica] individuals, and often’they are. Frequently, how-
éver, the production of each rational:sﬁbigroup may be divided into
strata or sub-sub-groups, which equid,"but for one reason or another
do not, form rational sub-gronpg for 'quality control. In Table V, for
example, if we are secking tq:p’oafroi mule variations, the spindles or
cops form a basis for sub-sub*groups of leas, There are doubtless other
multi-spindled machines4hut produce in batches of one article per
spindle, and the batcheéf'form sub~sub-groups if the sub-groups are the
articles made by tﬁx\n'achine In suceessive intervals of time; or the
same effect may.bé broduced if a machine is frequently recharged with
raw material\afd each charge produces z batch

In such ix{stances, the statistical individuals should be the largest
hatural §u§~sub~graups that can be formeq. In Table V, for exa:anle,
for tﬁe@mrpose of controlling mule variations the individuals should
be the'spindle means shown in the sixth column; the mean range should
belealeulated from the ranges 175, 27, ete., in the seventh column, and
ﬁhre n for equation {2) should be 5. The eontrol ehart for the 24 mules
1S given in Fig. 6§ with “corpeet” limits on the 0,001 probability levels
shown in ‘fu] lines; only the mean for mule 36 is oyt of control, In-

: .- '»Bmean range could be found and con-
verted to the standard deviation, and this coyld be used in equation (2)

™ith n = 10, This procedure would be Very wrong, for the meun range
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would measure a heterogeneous mixture of cop and lea variations.
Another incorrect procedure would be to use the ranges of the fifth
eolumn of Table V to measure the within-cop variation, and put n = 10
in equation (2). This has been done to give the limits in dotted lines
in Fig. 6; 6 of the 24 points are outside the incorrect 0.001 limits and
2 are on the lower one. This merely shows that the mule means vary
more than by an amount that can be explained by the within-cop varia-
tion. This is not a very useful result to the technician who knows

a0k 1T 7 F T 1 1. T 7T T T T T T T I 7T 7T ]
| (N4
B Correct 0.001 fimit O
7 3%0[- . Y -
g B » o Incotrect 0.001 limit > ]
- ——_——— FrL P —— £
= &
g B .m'\ * . 7
=) [~ M ‘ } .
5 I t 0.001 limit 0 ]
w |- ncarrec L) -
% :““________““‘_'__‘___"_:"L‘__'_"_“'""_“'_":_:
3370 L Correct 0.001 limit ]
|- "N A
3 I B 1’|“ [ T T T EEE NUC N WO IO T _
38 42 44 46 53 30 36 45 41 43048 49 33 35 Mo Mo BodSodbeil T dladladla
Mule number
...\ Fia. 6.

about spindle varlatlans\\these limits are perhaps inappropriate rather
than incorrect. _ /o™

If the produc’tibﬁ can be divided into sub-sub-groups which happen
to show no I‘.P\éﬂ.l rariation, the divisien is purely nominal and has no
statistical.medning; then it is permissible to use the ultimate articles
as indiy u,luala But in general we do not know this to be the case, and
sincgrnb harm is ever done by treating the sub-sub-groups as statistical
l@yrdual the rule given here is a good one.

The statistical theory on which the control chart is based assumes
that the statistical individuals in each sub-group are random in the
sense that no significance can be attached to the order or to any group-
ings in which they occur. In the above example, the effect of the asso-
clation of the results ecoming from the same spindle is destroyed by
regarding the spindles as randomly distributed individuals. Com-
monly, however, the articles tested are a series in time, and then
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seldom if ever has the order of occurrence absolutely no siguificance,
Ahmost inevitably there are patterns of variation—irends or quasi-
eyeclical movements—on which are super-imposed random fluctuations,
and the usual interpretation of the control chart iz valid only ii either
the variability associated with the pattern is negligibly small compared
with the random variation, or if the sequence can be broken into sub-
sub-groups so as to turn the pattern into a form of variation that is
indistinguishable from random. The limited possibilities of doing this
are discussed in the next paragraph. N\
Figure 7 1s a plot of the quality of part of an imaginary sequence of

: ;
| f

:
| |

Quality =
}

"
i
]
|

articles in one sub-group; the sequence is represented by a continuous
curve which we may take as'representing the underlying pattern of
variation, the actual v;;,}iies for the individual articles being imagined
as a swarm of pointg sedttered about the curve. The problem is how
to form sub—sub-g;c%ps which will constitute virtually random individ-
uals. If the sequence is broken up aceording to the dotted vertical
lines, the average quality, say, for each section const ituting & statistical
individual,;‘tl’fe section averages, represented approximately in Fig, 7
by crogfes, Tollow a recognisable pattern and so are not random. If,

- howg¥er, the division is in units of tirae that are long enough, say,
.a,(\:ég’rding to the continuous vertical lines, the section averages (there
~\are only two complete sections shown in Fig. 7) will not show a recog-
‘nisable pattern. A satisfactory sub-division fram the statistical vicw-
peint can be determined only after a full investigation,
seldom undertaken: but the engineer, know
ca] causes underlying the process, can oft
time the effects of single causes arc likely to persist, and how extensive
the sub-divisions must be in order to destroy the physical continuity.

’.I‘he same gencral considerations apply when sequences are distributed
I spage In one, two, or three dimensions,

such as is
ing something of the physi-
en say over what length of
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Tn all this dizcussion we have ceased to regard the individual articles
as statistical individuals; the articles have lost their statistical mean-
ing. Tt follows, then, that the treatment discussed in the previous para-
graphs can be applied to continyous products such as sand, chemicals,
glass, and wire. If the continuous flow can be broken up into sub-sub-
groups that exhibit only random fuctuations, these can be treated as
statistical individuals.

For the situple application of the statistical theory, not only must the
sequence of results within each sub-group follow no recognisable pabs
tern, but also it must follow no form of variation that is repeated/fxom
one sub-group to another. For example, we may have a machidile with
cight heads or spindles numbered 1 to 8, each spindle producing at a
slightly different level of quality, such that the cight leyelg in order of
head number show no simple pattern of variation. {Nevertheless, if
the production of all heads of the machine at one {iie ¥orms a rational
sub-group, the head averages forming the imﬁv&duals, the form of
variation between heads will be repeated f oftyone sub-group to an-
other and so will not be random. We ma¥ éhss such & form also as a
pattern--a eomplex one. An engineer wdult{ not often tolerate the con-
tinued existence of such head variatighs, but the example will help you
to visualise the point. \\

What are the effcets of patteftjis of variation within the sub-groups
on the eontrol chart? Thedhewer to that guestion is doubtless very
complicated ; it wiil depe;rgd)m the kind of pattern, and the effects have
never been fully investigated.

Sumetimes the pattern can obscure a real change in level. In order
to illustrate thig {éh us suppose an extreme case in which the eight-
headed machin{ entioned above produces articles with practically no
random vartafion, and no variation between sub-groups, the only im-
portant y%iéition being that between heads; and let there be one result
per head tn each sub-group. Then there will be a range which will be
t}Le:Si}iﬁe for each sub-group, and control limits for the mean chart will
%Ge ket some distance on either side of the line for the grand mean; but
all the sub-group means will lie on the mean line; they will not
be scaitered within the control limits. Indeed, the mean could shift
somewhat and yet the points never go outside the limits. Thus in this
stance the effect of treating the pattern of variation as though 1t
were random is to over-estimate the effect of the allowable variation
on the sub-group means, and this effect will be present in some degree
i a random variation is super-imposed on the pattern. In actual cases
the sub- group means can be too closely clustered about the grand mean



34 DETAILS 1IN APPLYING CONTROL CHART PROCEDURE

line, having regard to the position of the control limits, or there can
be an actual variation between sub-group means just about enough to
praduce the appearance of statistical control. Similarly the effect of
the pattern on the range chart is to cluster the points too closcly
around the line for the mean range and to obscure the effects of real
_changes in variability.

A pattern of variation within the sub-groups is not likely to produce
the appearance of a variation between sub-groups that does not exist.
The variation between sub-groups may sometimes be a continuationhof
the pattern within, each sub-group containing a portion of 4 ldrger
pattern; but the difference between that and the ordinary gnferfireta-
tion of a control chart is likely to be theoretically intpgt;sﬁing rather
than practically important. o\ ‘

&

The discussion of this section has been long andwather complicated
beesuse the problem is complicated; but you shonld not make too much
of the questions raised, particularly in t@e,xarly stages of quality
cantrol practice. More often than not the(random element in the varia-
tion predominates, and in any event the’control chart is only an aid;
you are not likely to go seriously asﬁlj"h,y if you let technical knowledge
be the ultimate guide to action.~Bometimes, however, you may obtain
puzzling results, and a referedee to this discussion may help you to
unravel the puzale and keef\your faith in statisties. Or you may wish
later to take the comp}iﬁa}ions into account,

. \\..
Sampling Methody

In quality eoiftal, as in most other applied statisties, we work largely
by samples‘, {n,d this practice raises & number of problems.

.Bias is omepotential source of difficulty which does not arise for many
industmal “products. The variations in the dimensions of machined
art}ph@s are usually too small to cause any appreciable tendency to

m‘c‘ﬁ}t{ct either the large or the small ones; no differences between electric
\ lamps are likely tc cause the sampler to prefer those with, say, long
life; and =0 on for a wide variety of products.

. Howaver, bias in selection can exist. 1f textile fibres are scleeted
mndividually, the longer ones have g greater chance of being included
thfm the shorter ones unless the sampler eonsciously tries to correct for
this bias, and then anything may happen. In a random seleetion of
lumps of coal of various sizes, bias in size of lump may affect the ap-
parent ash content. Particles of sand and other substances in bulk
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tend to stratify sccording to size and weight, giving the risk of a bias
due to position.

Pina can often be avoided, if necessary, by adopting some sampling
method specially adapted to the technical and physical eonditions.
For example, in sampling cotton fibres, if they arc taken in tufts of a
few hundred, there iz virtually no length bias. Then each tuft can be
halved, one half selected by a toss of a coin can be discarded and the
pther further halved, and the process ¢an be repeated until the residual
tuft eontains only a few fibres. Then, if several tufts are combined,
there results a single representative sample, free from biss and cofts,
venient. in size for testing, This illustrates the general prmmpLe of
taking aggregates large enough to eliminate bias (suitable onh “where
size does in fact eliminate bias) and fractionating them tp~pr6duce &
sample of a suitable reduced size. 4 ‘\

Ancther general way of avoiding bias is to ensyret that when the
subject varies in zones or strata, every zone is repregénted. In sampling
particles in a stratified bulk, the sample may, e(ﬁ}am particles from
all layers, and sarmpling tools are sometlmes blgned to secure this
end. O

Bias is not often important in qua]itj"n:-omml, even where it exists,
for the technician is interested in comfmi‘ibonu between sub-groups.

Sometimes only a sample of su‘b-»groups iz included in the quality
control scheme, as when a few #nticles are taken together every hour or
every shift instead of more M}lesg continuously. This, however, raises
1o questions, for the subdghotips actually tested are identified and dealt
with, if out of controfj\they are not necessarily regarded as typical.
Jhele is only the re\mote danger that they may be taken periodically
al intervals thatdodreide exactly with some periodicity in the quality;
then the periodid¥ariations would be missed.

Each sub ~group is regarded as a random sample from an infinite
DUDulat\lon When the total number of individuals in the rational sub-
"R{ll? Is small {for example the number of values per spindle in Table
V cdn not be more than about 2, it seems far-fetehed to assume an
mfinite population. A similar situation arises when we throw a die, and
we have no difficulty in regarding & limited number of throws as 2
redom sample of the many throws that could be, but have not been,
nade—s sanple of u hypothetieal infinite population of throws. Like-
wise we can casily imagine an infinite population of within-group vari-
athm‘ the hypothetical result of the system of causes of allowable
variations; the few actual values can then he regarded as a random
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sample from this imaginary population. The infinite population be-
comes merely a statistical model of the complex of within-group causes.

If the sub-group is divided into sub-sub-groups in Lhe way outlined
In the previous section, to form statistical individuals that are inde-
pendent in the scnse that théy conform to no regular or repeatuble
pattern in time or space, a sample of these sub-sub-groups {(or chusters
as they have been termed when sampling in other ficlds) taken in any
way is a random sample for the purposes of control. For examplenol
the 1200 spindles on each mule (Table V) only 5 are tested. , Ththe
spindles vary at random, it does not matter whether the 5 arg tlz first
five, the middle five, five chosen at intervals of 300 spindlcs, or five
chosen at random. [ the spindles vary according to some\pattern, the
stmple control chart procedure does not apply anyway{

The sub-sub-group is often represented by a sawple, just as in Table
V each spindle is represented by only 2 leas oub\df*the 20 or so on the
cop.. Such a sample is not necessarily chg&%nfat random, and it is
better that it should not be so. If the vatiation within the sub-sub-
group is entirely random, it does not matter how the sample is taken,
and, if the variation follows a pattern, the use of g non-random sample
improves the preeision of e-ontrolsf'Consider, for example, the cotton
yarn of Table V and suppose thatoa cop from one spindle is a sub-sub-
group forming a statistical mdividual. If there i3, say, a trend in
weight as successive leas¥e taken from g cop and leas are tested
from specified places, gg}’,\tlle first few leas or the first and then overy
fifth lea, the trendy\‘ﬂl not contribute to the apparent cop-to-cop
variation, and thid\will be s good thing. The within-cop variation is
1ot under invqs&igﬁtion (if it were the cops would be the rational sub-
groups), and todeliminate part of it (the systematic part) is to narrow
the contléol;limits for a given probability level and =0 to improve the
pl‘ecisiQ\Gf control. There are ng general theoretical rules for deciding
how, towarrange the systematic sample, and practical consideration will
L;sqall'y determine the matter; for example, it is not possible to get at

a5, say, until leas 1 40 4 have been wound off,

A ra.ndom sa_mple of leas from the cop would be perfectly sound,
thenret-lcall.y, sinec the within-cop systematic variation would thus
be turned nto a random variation and would contribute to the be-
tween-cop variation in the kind of way assumed by the statistieal

theory. The random sample would be sound but, for the purposes of
control, ineffcient,

Another kind of sam

rle would be exemplified by taking, say, the first
2 leas from cop 1, ' '

leas 3 and 4 from top 2, leas 5 and 6 from eop 3,
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and so on, returning to leas 1 and 2 for cop 11: you can easily think
up other patterned samples. This is theoretically unsound. The
within-cop variation contribntes to the variation between the eop
means, but not randomly, and the results on the econtrol chart can be
affected by the within-cop pattern of variation.

Now, as a relief after this long and intricate discussion, let us con-
sider & kind of sifuation that is fairly common and that is sometimes
discussed. Suppose that articles are coming from the production Hne
in a strearn, that 5 articles are to be tested every hour, and t-haj;\e‘(wh
geb of § consceutive results is to represent a rational sub-group. ~Showld
the articles be tuken: (a) regularly at intervals of 12 mlmites, Or{b) 5
at random from each hour's producticn mixed, say, in 4 b,‘n or {c)

5 produced closely together at the end of each hour’ Hth? Methud
(o] i3 equivalent to regarding the whole of each howr's production as
a sub-group; any pattern of variation that repeateMrom hour to hour
will not contribute o the variation between tHedmieans of 5; any pat-
tern of variation that changes from hour tu"h}ur together with random
variations will make a contribution. Métfliod (b} is also equivalent
to regarding the hour’s production as;,géub-group, but all within-group
variations will contribute to the valzitiiibns between means of 5. If the
repeatable pattern of variation j$appreciable, method (b) will be less
precise than method (a) for the purpase of controlling the hourly level
of guality. Usually the rop&table pattern will not he very important,
and the two methods l{gwe substantially the same results. Method
(c) i# equivalent to d:\%mg the production nto very many very small
rational sub-nroup\s Of' 5 consecutive articles and testing only one sub-
group cvery hoGry Then the allowable variation is reduced ta the
very small watiation between articles produced in a small space of
time, and.the‘control of average level of quality will be relatively pre-
tise, Y} hme the only important sources of variation are a local random
Vana&m and preventable trends such as those due to tool wear, this

bc the best method; where there are uncontrollable trends, this
oy thud will eauge too much searching for assignable eauses.

Sample Size and Control Limits

There are two approaches to the problem of deciding on the size of
the sample per sub-group and setting control limits; we may term them
the empirical and the statistical.

According to the empirieal approach, a sample size is chosen on the
ground that it seems reasonable to the practical man. It conforms to
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past practice, or just about keeps a reasonable inspeetion or testing
staff busy, or is of such a size that testing results are available soon
enough for controlling the process. Where the articles are measiired,
the number per sample is usually somewhere in the ncighborhood of §
or 1.

The three-sigma limits are used on the eontrol chart pritnarily on
the ground that a wide range of experience has shown that a point
outside such limits indicates some sssignable cause of variation &hich
It is economically prefitable to Investigate and eliminate. That these
limits eorrespond to certain probability levels is, in the u\ﬁhd’of the
empiricist, interesting {possibly) but unimportant. Lef\ads examine
the statistical approach, N

When we use the control chart as a basis for aciion in connection
with assignable causes, we are liable to go Wron,g‘in one of two ways.
First, & point may be outside whatever limitg e adopt, although the
population mean may be on the control levels the probability of this
happening (i.e., of action being taken unhgeessarily) s obtained from
the probability level corresponding toshe limits. For the 0.001 limits
this probability is 0.002, if we take'ac’t-ion whenever a point goes above
!;he upper or below the lower ling%t';:sind, generally, the wider the spac-
Ing of the limits, the lower Isnbhis probability, The second type of
error arises when the population value gocs out of control but the
point on the control cha# remains within the limits and no action is
taken (i.e, when hecessary aetion is omitted), The probability of thiz
error depends on, aiieng other things, the extent of the shift in popula-
tion valye, and ithyalue can not be stated generally. Clearly, however,
the more wi(%e\ly. the limits are spaced the greater is this probability.
1;“01'_ & 2vem probability of the first type of error {ie., for control
limits on. &/ given probability level}, the probability of the sceond type
of errjb(cfin be reduced by reducing the standard error. of the quantity
Pl‘?ﬁ@aﬁ elthe? by increasing n (the sample size) or by reducing ¢’ (the
Sstepdard deviation of the individual values) or by doing both. ‘This
\ : ! al basis for deciding the sample size.
We have dlSCl.‘{SS.ed In the previous gection Some ways of reducing o,

If the teclnician cag state the risks he is willing to run of taking
0 take necessary action for s given
atistician can easily ealeulate the
¥ the technician may be able to state
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Likewise the cost of failing to take action on a given shift in quality

- level multiplied by the corresponding probability of that type of error
for the given sample and control limits gives the expectation of cost
of the second type of error; it may be necessary to sverage this for all
possible shifts in quality level, weighting the average aceording to the
frequency of the various shifts. The sum of the two expectations gives
the total cost due to the two types of error for the given sample size
and control limits, and it is theoretically possible to find optimum Hmits
for which the total cost is 4 minimum. The total cost is the sum of
these minimum costs due to the two types of error and the sample, gnd
testing eost which increases with the sample size, Theoretically\it 1§
usually possible to find a sample size for which this total cost 1§ a'Mini-
mum; this is the optimum sample size. A

If the development of the process in time is being follovied and a shift
in qualily persists until corrected, the effect of the séednd type of error
is merely to delay action; sooner or later the shifiMwill be detected
whatever the sample size and limits (within re&éﬁnj. This delay can
be caleulated and can be used in the above ca‘l}ulations instead of the
probability of the second type of errar. ()"

Calculations of these kinds are relevasit when control charts are
being put to the first and second usestdeseribed in Chapter 3; on what
rational basis one can determine fok the third use when the evidence
of control is strong enough is wep clear. These calculations are com-
plicated, and they involve 2,800t deal more knowledge of costs than is
gencrally available, 1 0'\?1?013 know of any instance where optimum
control limits and sample sizes are determined on this basis, and even
peaple who claim toger1imits on consideration of probabilities use the
probabilities only'i-'aguely and choose them mere or less arbitrarily.
Thus, if a progess’is well “engineered,” good control is to be expeeted,
a little dela;\hhacing a small shift in level is not very important, and
the limitg are'set at a low probability level so as to make unnecessary
actionrgre. This is probably the kind of situation in which the three-
Slglﬁ'églimits, corresbonding to a probability of twice 0.0013, have been
faund satisfactory. In British publications inner limits at probability
levels in the neighbourhood of 0.025 are sometimes proposed as “warn-
ing"” limits; to take warning without taking drastie action is not very
costly.  Where a process is new and technical difficulties are being
located and eliminated during the course of manufacture, it may be
desirable to use such inner limits as a basis for action. Alternatively
Some help is given by locking out for trends and runs within the con-
trol limits.

D
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The two approaches to the problems of getting control limits and
sample sizes—the empirical and the statistical—appeal differently to
different people. There has been a slight tendeney for Armerican
writers to prefer the empirieal basis and for English writers to prefer
the other. My own view is that present-day practice is fundamentally
empirical anyway, since to chnose g probability level more or less arbi-
trarily on the basis of g vague experience is no less empirteal than to
choose three-sigma or any other limits on the same basis. The present
justification for any control system is the pragmatic one that it bdrks.
The two approaches do not lead to sertouzly diferent pmctim;}.and I
doubt that the measurement of the effects of control is at hesent pre-
cise enough to evaluate the efects of even quite substantiad differences
in control practice. But I have a temperamental (jbjéetion to relyving
on empiricism for longer than necessary. We gy at sny time en-
counter new experiences for which the old &itical basis may be
false. And if progress is to be made in kanedge of the economics of
quality control and improved preeision is’t'Q’ e attuined, it can only be
through investigation based on a statisfical analysis of the quantities
involved. For the sake of future p}'cigfess, therefore, 1 lay emphasis
on the statistical approach. N\

Whatever the basis of choi’ce:éf the control limits, the methods of

evaluation are strietly valid 0}11_\': when the population values X7 and o _
of the mean and standard, deviation are known. Sometimes X’ is given
b_y the specification to which the product is being made, and very oceu-
. X AT A . .

sionally ¢ is I{nown\g\prmm' When available, such @ priors knowledge
should be used, O\

When the RIOCESS is In control, there is no difficutty in estimating the
unknown quintities from past test data;

y ; it is only necessary for the
amount of data to be enough to give reliable estimates. Fop practical

p.urpos{wwe need not go deenly into this question; only very excep-
uotﬁ}?ly should we be eontent with fewer than 20 sub-.gl‘oups, and prefer-

“ ably there should be about 50, When there are 10 sub-groups or fewer,
‘vertain theoreticg] difficulties begin to have importance.

\.Vhen & process is out of control, the procedure described presents
logical diffieulties. The grand mean X estimates g population mesn
that ean be interpreted only artifieially, and, if the variability changes
from one ’sub-'group to another, the population standard deviation o
hasi no existence. It would be possible to think up peculiar effects of
assignable causes that would give eharts showing the appearance of
eontrol. - Nevertheless this doge not often oceur in practice, and the
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procedure usually discloses lack of control, if it exists, and so serves its
purpose.

An Example ﬁ/

A paper by Mr. E. W, Harding * is specially interesting because it
deals with an applieation to a subject that at first sight looks unprom-
lsing, it describes fully an experimental step-by-step approszch, and it
raises many of the problems that arise in quality control work., A dis-
cussion of this paper will illustrate as well ag recapitulate this and the >
previous shapter. O

Meehanite Metal, a high duty iron, is made at a number of foup(]f'ies,
and one objective is to produce at all of them iron having standard
chemical and physical properties. The iron is melted in a.dupola, which
is charged continuously with iron and ecke, a ladlefu'lwé\f&ﬁwlten metal
being periodically taken away to pour into moulds\feneastingz, In the
product there are variations due to variations in the raw material, in
the charge weighing and practice, in combusti x11.\:011diti0113, and so on.

The past procedures left something to be{desired because the opera-
tion of the technical controls was le{t: 40 personal judgment, pre-
ventable variations could not be distibguished from those inherent in
the process, there were no guiflqs',{d “tracing causes of variations and
estimating their iraportance, anththere was no quantitative measure of
control by which the progress ‘of a foundry could be fcllowed or one
foundry be compared with another.

The first step was fovevaluate from past test data the mean and
standard deviation.$f each property for each foundry. Differences in
the standard deiftlon between foundries suggested that this was a
good measure/pf the degree of control achieved at each foundry, and
the lack ()K“a\ny relation between the standard deviation and mean
SUgges’Qeg}’%at- a “standurd” value of the variability of each property
couldbe’ specified for all foundries, irrespeetive of the type of iron
I{(Il‘eguded. “Standard” values were based on those for the best
fothdries. Consideration of the circumstances at the foundries sug-
gested that the effectiveness of the control depended less on the control
facilities available than on the eonscientiousness and consisteney of
the efforts of the staff. The “standard” values of variability included

* “Biatistival Control Applied to High Duty Iron Production,” Supplement fo
The Journal of the Royal Statistical Soctety, Vol. 8, 1946, p. 233. A vorsion of the

Paper, under a similar title, appears ulso in The Foundry Trade Jouwrnal, March
I6, 23, and 30, 1044,
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a large contribution due tg testing errors, so that centrel would inelude
control of the testing methods.

Control charts were then made. For each type of iron the rational
sub-group was the quantity produced in the space of a few days, the
variation within that time at a good foundry being acceptable as in-
Lerent in the process. For testing purposes & specimen of iron was
taken from each of about one-seventh of the ladles, the proportion
being designed to give 6 selected ladles per sub-group, which therefore
contamed about 42 ladles. The test result from each specimen fofmed
an individual for the measurement of range, The sample size ¢R6 was
chosen because it involved an amount of testing that was yegarded as
reasonable, Ao

The selection of ladles was made according to a rota, fhe first ladle in
the first group of 7 being chosen, the second in_thegeéeond group, and
20 on, the seventh in the scventh group (belcnging“th'the next rational
sub-group}, the first in the eighth group, and\d on. This ealls for
comment. Had the variation among the 42 8r %0 ladles within & sub-
group been entirely random (i, free f‘robﬁ‘trends or other pattern),
the method of selection would not hav® yhattered; the adoption of an
elaborate method suggested that theltechnicians were not prepared to
assume randomness. It might hs{({e’bcen possible to assume that any
trends would be well eontaindd’ within 7 consecutive ladles, so that
7 ladles would form a cluster'#nd the 6 sets could have been regarded
a8 3 random sample frofinan imaginary population of “might-have-
been” clusters, Then,{in order to have made strictly valid charts, it
would have been better to have taken always the same number of ladle
in each cluster, sa¥ ladle 1 or 4 {zee p. 36). The method of selection
adopted enh?\ﬁ}eed the apparent random variation by mcluding any
non-randomelement there might be within the cluster; and since this
non-rapdont” element did not necessarily contribute to the variations
betwen sub-groups, the control Limits might conscquently be sct too
widely to detect some variations betwecn sub-groups. In this instance

) ,.\ifilé method, although perhaps somewhat unorthodox, proved of pric-
tical use, as we shall gee,

In order to make the system simple, only three properties were meas-
ured on each specimen—two chemical and one physieal; and the mean
and range for all three werp plotted on the same chart, Moreover, each
foundry was discouraged from making charts for more than tliree main
types of metal. These were concessions ta practieability.

It was found that individual foundries could be in control when the
eoatrol limits were caleulated from a grand mesn ¥ and mean range It
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obtained from the records of that foundry, but out of control when the
limits were based on the “standards’ adopted for the mean and standard
deviation of the various properties. The aim was, of eourse, to achieve
control within “standard” limits. The effect of the charts was to stimu-
late a econscious effort to meet the limits and to help by giving early
warning of impending changes, with the result that there was s hetter
control of the average level and a marked reduction in variability.

Az a further aid to control, attention was paid fe interpreting thg
data on the charts. One example is given where the range was shown
to be out of control, an oceasional range being too high. The sib-
groups for which this obtained were those containing the last\ladle in
the “heat,” and, when the data for the carly and Iat’e‘j'la\dles were
treated separately, only the latter were found to bejquf of control.
This effect could have been discovered only through the adoption of
the rota method of sampling, and it was rightly attributed to a non-
random within-group effeet. Thus the unorthodox sampling scheme
coupled with an unorthodox interpretation ogr‘e}ults proved to be fruit-
ful. The effect was associated with causcs(coming into operation at the
end of the heat. e,

Other clues to assignable causes.Syere given according as changes
affected all qualities of iron at theffoundry or only one, as they affected
all properties or only one, as th,éjn affeeted the average or variability or
both, as they were abrupt of'gradual, and so on. The work was helped
by recording on a chagb}arallel to the control ehart all operating
changes as they werelthate. '

The whole picture given by the paper is of a scheme that was
developed experiméntally, not installed ready-made; perhaps the
mosk sigt;iﬁca<’11;’feature is that there is a section headed “Future
Developmenis.”
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Chapter 5. CONTROL OF THE FRACTION DEFECTIVE

Contral Charts for the Fraction Defective

The three preceding chapters contain a diseussion of quality control
when the quality of the individuals ie some measurable quantity &hd
that of the mase is & mean or some measure of variability. Exabfly
parallel procedures are availabie when the quality of a mass ig\'s})&iﬁf:d
by the fraction of defective articles The production may &g divided
into rationa) sub-groups, a sample may be taken from egell, sub-group,
and the fraction or numhber of defective articles may hef\determined and
plotted on a chart. If the number of articles in,m};h sample 1s the
same for all sub-groups, it is convenient to plofNh& number of defec-
tives, and this procedure will be dealt with xh@wﬁ The methods have
been developed for application where thel ttinber varies from one
sample to another, but they are more Moublesome, and this kind of
situation should be avoided if possible, \/

When the quality is measurablc,{t’ﬁé control limits for the mean or
range chart depend on o, an cmf)ii‘ically determined measure of the
variation that happens to exish Within sub-groups. For the fraction
defective, the allowable vapiation is more fundamentally defined as the
kind of variation that o€Curs in equivalent idealised games of chance.
Let us suppose the fl’é(@idh of defective artieles in the population to be
p" and the numbergier sample to be n, Then we may imagine a large
churn containing{rnllions of cxactly similar tickets exeept that a frac-
tion p” are m'&{ke'd in some way. If these tickets are thoroughly mixed,
samples ofmbre drawn at random, and the numbers of marked tickets,
P, are pldtted on s control chart {p varies from sample to sample) ;
the s:ezi'tter of the points shows the allowable variation in the number
deféstive in samples of n from & process that is statistically in control.

\In‘:érder to define control limits, we need to know the probability dis-
tribution of the number .

This distribution has been deduced theoretically and is known as the
binomial distribution. Tt depends only op p" and n, and the mean num-
ber of defectives ber sample, pn, approaches #'n as the number of sam ples
becomes very large. The distribution is, of eourse, not Normal, but
its exact application presents {wo difficulties: the probabilities are

44
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Iaborious to ealeulate, and only exceptionally can limits be found corre-
sponding to any particular probabilities such as 0.025 or 0.001. The
second difficulty arises because the number of defectives per sample is 4
discrete variable—it must be a whole number. Accordingly, approxi-
mate control chart methods have been developed.

The first, which is deseribed in British Standards Institution publi-
eations on quality control, is based on the fact that, when 7 1s small
(say less than 0.05), the binomial approximates another distribution
the Poisson distribution, which is defined not by o’ and n separately,
but by p'm, which iz termed the populution or expected numkeb, ‘of
defestives per sample; and tables and charts are availabie giving
the probabilities for various values of p'n. The British, Standard
1313:1947 gives for various values of the “average numbez: of defee-
tives expected in the sample” (which is #p’ in our notation), the upper
control limit corresponding to & probability level Gf 8005, If the pro-
duetion is in control, 1 point in 200 on the averagd will lie on or above
this limit. The limit is given as a whale Witber of defectives per
sample, and only for values of np’ for which a whele number defines
the 0.005 Himit exactly. For other valqe&éf np’, the next higher value
in the table is used and the probabilify*is somewhat less than 0.005.

The second approximate methed®is the onc mostly deseribed in
American publications; it is by far the more convenient. The standard
deviation (or standard em{f of the number of defectives per sample

for perfect control is ("
AN e

Sta,n‘d;}d crror of np = \/np’(l — 27 (3)
5o that if ¢’ andwpldre known, this can be evaluated, and three-sigma
limits can be/getat 3 times this standard error above and below the
“expected? Aiumbcr p/n. This procedure may sometimes give a negative
yalue for the lower limit, which is then conventionally set at zero.
Lim.itgf will usually come at fractional numbers defective per sample,
btrt,: i they are drawn thus, the actual number for each sample will
2Wways be definitely inside or outside them. This precedure can be
regarded as approximating the exact procedure, since the binomial
distributjon approaches the Normal form as n becomes very large,
provided p” docs not become very small. However, the preferred justi-
flcation is usually that, as in other kinds of e¢hart, three-sigma limits
have been found to give good results.
A straightforward extension of either method serves for the forma-
tion of eharts of the fraction or percentage defective in the sample.
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One of these quantities must be used if the total number of articles
in the sample varies,

The population fraction defective »” may be known or postulated, or
it may be determined-as a grand mean P obtained from a number of
samples (usually 20 or more). If 5 is used as an estirpate of 9, it is
preferable if at all possible for it to be caleulated from 4 series taken
-when productien is in eontral and P’ is constant at the required level,
Otherwise the limits will tend to eonform somewhat to the actual saria-
tions, and the chart will deteet changes in the level, of contrel less
sensitively. ¢\

The same general considerations arise in determining th§ pest sample
size for the fraction or number defective as for the yadan and range,
but no quantitative investigations appear to have’ heen made,
and advice on sample size is somewhat arbitrary ai;;d “1s based on vague
general experience. A good working rule is to.make the samples large
enough to give hetween 1 and 3 defectives‘ger sample on the average.
Other problems of application are, in g@eral, the same as for mean
and range charts, )

NN

Compressed Limits N\

When the quality of the arti‘cjles' is some dimension, the fraction or
number that are defective bf(jbause they fall outside the limits of go,
no-go gauges are alternatives to the mean and standard deviation as a
statistical measure fgrontrol purposes. Statistically, however, it is
& less efficient meay uﬁe; because for a given sample size and probability
tevel for the contnq%imits there is a higher probability of missing a real
change in thegantrol level This difference in efficiency can be coun-
tered by hav‘gﬁg & larger sample for the fraction defective than for the
range s{ng}tandard deviation in order to give the same precision of
control\./Then gauging is economical if it is intrinsically so much
quiqké and cheaper to perforr than measuring that the larger sample
'tﬁkés less time and costs less. With the low fractions of defectives

N\ usually encountered in inspection, say up to 0.05, the gauged sample
'needls to be very much larger than the measured sample for equivalent
precision, but gauging nevertheless remains very popular on acecunt

of its convenience and simplicity.
‘ 1f the measured quality is distributed Normally, eontrol by gauging
Is statistically equivalent to estimating the mean and standard devia.
tion from the fractional frequencies oy, *2, and o respectively below
one limit of the variable, between that and a second limit, and above
the second limit. This method of estimation is less efficient statistically
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than the methods involving the caleulation of the mean and standard
deviation hecause it does not utilise all the information of the full
frequeney distribution; it merely utilises the three proportionate fre-
quencies @y, 2o, and 3. The statistical efficieney of the gauging method
hag been worked out for large samples, and it is found that there are
optimum values of the three preportionate frequencies. For giving
warning of small changes in the level of quality, the gauging method
is at its best when the gauges are so set that 2 = # = 0.25 (approx.y\
{i.e., so set that therc are sbout 50 per cent defectives); then samples
of 124 articles give as good control as samples of 100 measured\and
averaged, For smaller samples down te about 20, the numbeta 1n the
same ratio give equal control by the two methods, - For 1nd}eat1ng lack
of econtrol due to changes in variability the gauging m€thod is at its
best when 2, = a3 = 0.05 (approx.) (ie., when thergsare about 10 per
cent of defectives); then samples of 156 artieles glwd as good control
against this kind of change as 100 articles meaguted for the caleulation
of the standard deviation. If the productidn™is liable to go out of
control through a change in either average Jevel or variability or both,
& good eompromise setting of the gauc,es would make o = a3 = 0.1,
giving about 2 per eent defectn'es oh the average; then about 160
articles gauged give as good contr()l as 100 measured.

Thus gauges set. for the pumnqes of control and not for the purpoeses
of detecting defectives accm‘dmg to the designer’s criteria can economi-
cally give good contro \Such are termed compressed limit gauges. It
is not necessary for cxl, 3, and z3 to have any exact values; it is merely
that the method_ i&at 1ts best when the values are near those stated.
Ounee the gaug a\re set, the results can be put on & control chart for
the fractionAd ‘gz}fectnre in the ordinary way. Since the average frac-
tion is lug\&‘ than 0.1, the approximation of using the Poisson distribu-
tion to, t:aloulate {he probability limits according to the methods in
the Buitish Standards Institution publications is not good, whereas the
thlee -sigma limits are a better approximation to the corresponding
Normal probability levels than when the fraction is low.

Where the variability is known to be in control and it is desired to
control only the level, a single gauge may be made to the required mean
dimension; then, if the distribution is symmetrical in form and the
production is at the required level, 50 per cent of the articles will pass
through the gauge. Any departure in the fraction “defective” from
0.5 will indicate a change in level. Control by this method is statisti-
cally equivalent to estimating the mean of a distribution frem the
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median, and under most conditions a sample of 160 articles gauged
gives as goed eontral as one of 100 measured and averaged.

Two-Way and Related Charts

One drawback of ordinary fraction defective charts is that {hey give
no elue as to what is wrong when a process goes out of control, in the
way that mean and range charts do, This can be largely eliminated
by having separate charts for npy, the number of articles beiow\the
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lower limit of sige, n’d.%;a, the number above the upper limit. The
interpretation of such charts is made casier if they are plotted with
eammon bage linefor np; = np, = 0, and seales for np, and Hpy, going
respectively dptards and downwards, as shown in Fig. 8. Then, if the

?

incrtesi:%s and ngp, decreases, as shown for samples 31 to 40 in Fig. 8; a

.»\If,\ ‘the variahility of the underlying measurable character inereases,
with ne ehange inthe mean, then both np, and npy, increase, as shown
for samples 41 to 50 in Fig, &,

i may be interesting to consider how Fig. 8 was arrived at. It
bresents the results of up artifieial sampling experiment. For the
“standard production” of samples 1 to 30, 30 sets of 20 two-digit
n‘u_mbers were taken from ong of the existing tables of random numbers
{ie, numbers formed by combining the digits 0 to 9 in all sorts of
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ways enfirely at random}, In each set of 20 the numbher of numbers
between 90 and 99 {inclusive) was counted and cniered as np,; thus
the population frastion p'; was 0.10. We may imagine nps to be the
numbers of articleg, in 30 samples of 20 taken from a bulk production
in control, that are larger than a limit of size so set that in the bulk a
{raction 0.10 are larger. Thus the values npg are the sample numbers
of defectives when the population fraction is 0.10. In the same 30 sels
of 20 numbers, those between 00 and 09 (inclusive) were entered as »
np1; they correspond to p’y = 0.10. Then for samples 31 to 40 the
same procedure was adopted, except that it was Imagined that the mom
dimension had increased so as to make p’y = 0.25 and 'y = 0‘03:\ The
fraction p’; was chosen arbitrarily to represent a stlbstaniiiﬂig ¢hange.
and 9, was ealeulated to correspond, s Normal distriBigion of the
underlying quality being assumed. The change from’p?r = ¢y = 0.10
to 'y = 0.03 and p3 = 0.25 corresponds to an inereige in mean of 0.61
times the standard deviation. For samples il £0-50 the experiment
was econtinued with p’y = p's = 0.23, the chahgu from the “standard
produetion” corresponding to mLIea‘-mg thc standard deviation to 1.9
times its original value, o)

Next comes the ealeulation of the eontrol limits. In Fig. 8 are shown
three-sigma limits. These could bc caleulated from the known p’; and
P’z = 0.10 for standard pr oductmn but in order to simulate somewhat
practical conditions np; and nm were caleulated from the first 30 results.
They are: np, = 1.97, ence p; = 1.97/20 = 0.0985 and, according
to equation (3), the standard error is 1.33, giving the upper three-
sigma. limit at 6.0; npy’'= 2.33, whence p; = 0.11653 and the standard
error is 1.44, giving\tle upper three-sigma limit at 6.6. )

Now it is secfiArom Fig. 8 that for samples 1 to 30 all the fluetuations
are within thg Hmits except that for sample 27 npy approaches its limit;
for samp]ﬂe\c 31 to 40 np; goes outside its Hmit three times, giving clear
evidende ol the change in mean; and for samples 41 to 50 both np, and
g Z@pproach or cross their hmlt's several times. It will be noticed,
howéver, that although the changes underlying the results of Fig. 8
are substantial, scveral results are within the three-sigma limits,
especially those for samples 31 to 40. The samples of 20 are only just
large enough to detect the changes if three-sigma lmits are used and
interpreted strictly.

The limits could have been caleulated from §, and fis ealculated from
the 50 sets of results. Then the limits would have been even more
widely spaced and the evidence of change even less clear.



30 CONTROCL OF THE FRACTION DEFECTIVE

An alternative method of expression of the results of a two-way
chart is to plot
4 =np; —n
v = np3 + np,

If the mean of the underlying quality increases, so does @, whereas »
changes very little; a chart of g thus corresponds to the mean chart (as
& mnemonic you may remember that a is the initial letter of avgrage),
If the variability alone inereases, ¢ is almost unchanged and o indréascs.
Valucs of ¢ and » for the results of Fig. 8 are plotted in Fige 8.y
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:»Squr the calculation of the control limits, use nay be made of equa-
\”\}m’ms {5).

a.-2
Standard orror of g = ( ' ,__)
n
I w—— (9)
Standard errop of v = U_{E:v_) :

i

it !’ )- .
vhere ¢ and o are population mean values of @ and ¥; that is,
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o = np'y — np'y

v’ = np's + npy
If o' and v' are not known, 4 and 7, averages estimated from s series of
aciual results, are used instead. Equations (5) apply only when #n is
“large” and do not give good approximations when n is less than about
20. Indeed, v is merely the number of “defective” articles in a sample
and the second of equations {5) is exactly equivalent to equation (3).

For the data of Tig. 8§ we know that, during the period of “standard
production,” ¢’ = 0 and »* = 4, but the limits drawn in the figure iaye
been caleulated from 4 = 0.367 and # = 4.300, calculated from thedata.
The standard error of a is then 2.07 and the three-sigma limits"are at
0.37 4+ 6.21 = 6.58 and —5.84. The standard error of pjg 184, and
the three-sigma limits are at 4.30 &= 5.52 = 9.82 and 3’4\22 Heecause
a negative value for v is impossible, we set the lajverdimit at v = 0.
All the above caleulations were done with a s[ide\rule, and the second
decimal place may be two or three units in erref/y :

The movements in a and v relative to th‘e} ntrol limits on Fig. 9
lead to substantislly the same conclusiofighas the two-way chart of
Fig 8. Any preference for one chart;,gr"..the other is perhaps a matter
of taste, N

A full theoretical diseussion of the methods of these last two sections
is given in a paper by Mr. W, I, Stevens.* There, among other things,
are given rathier more refinedptethods for caleulating control limits.

These methods of cor tﬁél‘ i)y gauging are not widely used, although
they have been muchuged by one or two people. One possible limita-
tion mentioned by gxcontributor to the discussion of Stevens's paper is
the effeet of errpfiz e to wear in gauges and the human variations in
their operatipn {’The application of the methods thus calls for more
practical indeéstigation, but they are promising enough to deserve more
cxtensi\{e}@rial.

*'jicér\l‘tr:ol by gauging,” Journal of the Royal Statistical Suciety, Series B, Vol.

1'3\1918, p. 54.



Chapter 6. SPECIAL APPLICATIONS AND ADAPTATIONS
OF THE CONTROL CHART

Time Series ~
Bometimes date are presented in the form of a time serieg, inMwhich

. there iz one result for eacl of a number of successive times,/and one

N
%
\ )

wauts to know if there arc any evidences of non-randag variations
attributable to assignable causes. Such data arise perhiaps more often
in efficiency and production control than in qualityzeontrol.
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OF. o
N In Fig. 10 are plotted for two steel furnaces the times to melt 100

sgccessive casts (the data are from Statistical Methods in Tndustry?.
Since there is only one value for each cast, there is a problem in decid-
Ing how to caleulate control limits, The data are accumulated into the
ff)rm of frequency distributions to the right of each chart; the distribu-
tions arc not Normal, that for Furnace being markedly asymmetri-
cal—but that does not necessarily signify the prescnee of assignable
canses. If the standard deviation is ealeulated from the root-mean-
square deviation from the mean [equation (1 ), p. 7] and control
52



TIME SERIES 53

limits determined from this, the existence of an undue number of points
outzide the limits will merely signify the departure from Normality,
For A Furnace the mean is 12.27 hours, the standard deviation so esti-
mated 8 1.718 hours, and the 0.001 upper limit s at 12.27 4+ (3.09 X
1.718) == 17.38 hours. This iz drawn in a dotted line in Fig. 10, and
only one value eomes near it; such mederate departures from Nor-
mality as that of the distribution of A Furnace are not clearly demon-
strated in this way. For G Furnace the mean 18 11.50 hours, thes
standard deviation is 1.687 hours, and the 0.001 upper limit is 164
hours. This is drawn in a dotted line in Fig. 10, and there are‘thinee
values well beyond it, owing to the extreme departure from Nérinality.
"The lower 0.001 limits have not been drawn, because therg ate'no large
deviations below the mean value. AN

The chart for A Fummace gives a strong suggestin};"of gystematic
changes, the melting time starting high for the $x3¢*2 casts, then re-
maining low for casts 10 to 30, increasing to about the mean level for
casts 30 to 80 or so, and finally increasing si;i(liurther. Superimposed
on these slow changes are apparently randem/variations, which we may
regard as the natural allowable variati‘oné of the process. How may we
evaluate them? The difference tletﬂ\':e’en suceessive pairs of results
(ie., between the first and secondythe sccond and third, and so on) is
affected only by the random vapiation plus the variation due to the
extent of the slow nmvemer& fPom onc result to the next. This second
contribution is negligibly &hall for A Furnace, so that for our purposes
the mean difference befecn pairs may be regarded as a mean range in
samples of 2, estim@ting the random variation. ¥or A Furnace this
mean range is 1 328 hours, and the estimated standard deviation (Table
IV) i9°1.325 23128 = 1.175 hours. This is very much less than the
value of L 718 hours which measures the random variation plus that’
due to the'slow movements. The 0.001 upper control Jimit for the
randofvariation is 12.27 4+ (3.09 X 1.175} = 15,90 hours, and this is
dra®n in Fig. 10. Four points are outside this lmit, demonstrating the
'rcai’ity of the slow moyvement. In this instance, the control ehart with
its limit perhaps tells us little more than an inspeetion of the points
without the limits tells, but the conelusion is more clearly established,
and with the limit the technician will khow when to investigate or take
action as the chart is continued and subsequent points are added.

The slow movements are not so apparent {or G Furnace, but the
mean range in pairs is 1.358 giving an estimated standard deviation of
1.358 + 1,128 = 1.204 hours. This also is Jess than the estimate of

- 1.687 hours from the full distribution, suggesting that high values are
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not entirely “bolts from the blue”: the chart usually climbs to the
high value and climbs down from it through the two or three values
before and after. "The control Hmit based an the lower standard de-
viation for (G Furnaee in Fig. 10 does not appreciably alter the eon-
clusions reached with the aid of the other 0.0071 Tinit,

This simple adaptation of the control chart procedure for dealing
with time series does not always “work’: it fails entirely when high
and low values tend to aliernate. But it often proves a useful adjunet
to the visual examination of the trends on o thne chart. There aied of

course, other and muel more elaborate ways of dealing with ti;ne\scries.
2

The Group Control Chart O

The group eontro] ehart was firsi described by Dr. BN Sealy * It
is designed to give control of 3 group of similauua,“(irl independently
adjustable machines or heads on a machine in{@way that js more
economieal than making a separate control chalt for each. At each
testing time, two or more articles arc tested from each machine, and
the separate means and ranges are caleulated just as though they were _
to be put on separate charts for the mz}cl’xines. For the group chart,
the limits are ealeulated from the eomifion mean and a corsmon mean
range for all machines, Then on :é’ae'l'] oceasion the highest and lowest
of the machine means are pquitcfi on the mean chart, and the cor-
responding machine number ¥ also recorded. On the range chart the
highest of the machine raqges is plotted, and again the machine mumber
is aleo recorded. The @liatt indicates when any machine in the group
goes out of control And which one 1t is, and the record of the numbers
shows whether aydmachincs have been giving more trouble than the
others, AN/

The method-does not appear to be very good where several maclines
are lil{(‘}\y:ﬁt:’go out of control at the same time,

O\
qui’;@ed Control Limits

AT the procedures so far deseribed are based on the theory that per-
\fect statistical contro] ag defined in Chapter 2 is practieable and eco-
nomical; that the rationa! sub-groups are arfanged to contain all the
allowable variation. In machining articles to specified diniensions with
tolerances, however, tool wear and trends due to other eauscs are in-
evitable, and it is uneecononnieal to attempy by frequent re-settings and
replacements to eorrect fop the eonsequent departures from perfect

* X . : v .
A First Guide to Quality Control for Eugineers, London, Ministry of Supply.
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statistical control. It is necessary to maintain a control of the process
that is sufficient but short of perfect eontrol. This situation will be
discussed in terms of machining, but it doubtlese urises also in some
other processes,

The situation is set out diagrammatically in Fig. 11. The dimension
is represented along the y-axis and the drawing dimeusion and tolerance

Tolerance
Himit 0.025 modified A
¢ | Defectives 0.1% contr Clﬂ lirnit
! L 1.96 (N
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Tolerance N contral kit
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nits al‘efx{p}éécnte{'{ by continuous straight lines. It is assumed that
the prodfichion needs ro be maintained so that at no time are more than
0.1 pf‘\'l?:(‘}e‘nt of the artieles over or under size, and this requires th.at
agtalAimes the “population” mean dimension shall be between lnits
“\iﬁin the toleranee limits. The huagined frequency distributions ol
the individual articles are drawn in Fig. 11 when the population mean
is at the two levels that give 0.1 per cent defectives.  If the distribution
is Normal with a standard deviation of o7, these levels are 3.090 \\'irh‘in
the tolerance Hmits (Table III1; they are marked in Fig. 11 as “lunits
for population mean.” The production requirements are satisfied if
the population or lot mean dimension of the arficles produced at any
one tue is between these limits.

E
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Now suppose that the number of articles per sample is n and that the
0.025 contrel limits are in use. For perfect statistical control the limits
would be set at 1.960" /v % above and below the drawing dimension, as
shown in Fig, 11. Since, however, the population mean may move be-
tween cerfain limits, the control linits may be drawn at 1.96+/vn
above the upper limit for 1lie population mean and at a similar distance
below the lower population limit. These are called madified control
timifs, and they are drawn in Fig. 11. Corresponding limits may, of
coutse, be caleulated for other percentages of defectives and probability

- levels, and imore rarcly) for other forms of frequency distribdtina.

The modified control limits are used just like any offier “control
lirnits, the machine being re-set only when a point gogza}(‘)u’tsidc them,
and such charts have apparently been satisfactory in pfacﬂce. Clearly
the variahility must be strietly in control, Pragtical“experience, how-
ever, 1s not always a good test of theoretical véliﬂity, and there are
theoretical difficulties about modified contedl timits. It is logieally
fallacious to transfer all the arguments f,l.lj'\t; @pply when there is statis-
tical control to the uncontrolled situatioh,) Why are the modified con-
trol limits set outside the limits fo’rgt’he’ population mean rather than
inside? The population mean ig}zliﬁost sure to move towards one or
other population limit and mayr é;asily move beyond hefore a samnple
mean goes outside the 111qg1iﬁéd control limits as shown. If theve is
statistical control, 0.05 gf the sample points lie outside the conven-
tional 0.025 control lifite; the proportion of points lying outside the
0.025 modified Hmfte“will be 0.025 i the population mean remains
exactly on one of dther of the limits for the population mean, and less
if it spends :a\n’}-' ‘apprecisble time between those limite, It will only
reach 0.054f e pupulation mean moves outside its Jimits, Invleed, in
order Igheé’eribe the results of any state of “controlled uncontrol” in
tcrlrlgs\'}) probabilities corresponding 1o those used in deseribing the
istalg30f contrul, it 1s necesgary to make assunaptions about the form of

s1he allowed variation in the population mean,

‘UHE‘ simple assumption is that the pepulation mean changes Imearly
with time in the neighbourhood of the thne when aetion is taken. TFor
the sake of a conerete picture et us imagine a tool wearing so that the
mean dimension of the articles produe
and at a certain stage lot the too! he discarded and the machine be
ﬁtted’ wi.th @ new fool and re-set. Then it is pousgible to work out a
solution in terms of the following quantities:

ed inereases linearly with time,
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The rate of wear of the tool measured by the rate of change of the
population mean with time,

The intervals at which samples are tested.

The sampling distribution of the sample mean: especially its stand-
ard error, _

The control limit of sample mean value at whieh the tool is discarded.

The probability distribution of the state of wear at whieh the tools
are discarded, and in particular the level of population mean dimen-
sion that is exceeded with a given (low) probability. N

If any four of thesc sets of quantities are known or ean be,aésﬁ'ﬁ?ed,
the fifth can be deduced. The subject is dealt with and tables e given
in a paper, “The Control of Industrial Processes Subje@‘tﬁ”Trcnds in
Quality.” ¥ T have not heard of anyone who has mallélsuccessful use
oi these results, but, if quality control is to deyelap soundly and to
give greater precision, not only must practical ap\plieation be suceessful
but also the theoretical basis must be sound.\‘} ’

It is possible te use go, mo-go gauge’sl to give the kind of control
achieved with the aid of modified lititis’ of & measured dimension. If
the frequeney distribution of the® dimension of individual articles is
symmetrical (it need not be Nérinal) and limit gauges are set to the
two dimensions designated jh Fig. 11 as limits for population mean,
the population mean wili\satisfy the required conditions i no more
than 50 per cent of tho rticles lie above the limit set by the larger
gauge or below thathget by the smaller. This eondition ean be estab-
lished by forming;d two-way fraction defective chart for the two
gauges, simila{'t,o that of Fig. 8, calculating the limits on the basis of
P'1 = ps =45,

*rB-iwq«?%J(, Vol. XXXII, 1944, p. 163.

¢N®
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Chapter 7. ACCEPTANCE SAMPLING

In quality eontrol as so far deseribed, test data are used to trace
backwards towards the manufacturing source asziznable eauscs of
variation. Another use is to decide what to do with the produets in
subsequent processes. If suceessive lots of any product are thelsame
in quality, whether that is measured statistieally or not, the}i\will all
be treated the same, and the only purpose of the test datasmey be to
give assurance that the quality is the same (ic., ir}”go‘ﬁtrolﬁ———muﬂl
assurance a control chart gives, The evidence of a cwnftrr:‘l chart, where
available, is much preferable to that supplied bydhe best acceptance
sampling seheme.  Semetimes, huwever, theredsmé cvidence or expee-
tation of eontrol, as when lots of raw II'Jatc'.'rQl:arc presented from un-
known sources, and test results are then zéghired as a guide to subse-
quent action. Buch aetion may im-‘nl‘\zéjﬁjection if the lot is unsuit-
able, allocating the lot to a partieyiagdarade for subscquent use {eg.,
& given lot of bolting silk will be ‘elessified and uscd according to the
size of holes in the mesh), or addpting the later process Lo the quality
of the material (as in somgtmmetallurgical and chemieal manufacture
where the quantities of the various eonstituents are decided acrording
to the analytical chatadetistics of the lots supplied).

11 ail the materi Kfrr the lot is tested, as when there is #100 per eent
mnspeetion,” the ~a§>rnpriate action is purely g technical question.
Statistics enters when the quality of the lot is appraised from a sample,
us must qceﬂ? when the test s destructive, and as often oceurs for
"(’ﬂﬁt!nﬁ..s\rf;,f‘t}lmmy. The sample docs not represent the lot exnetly,
and, Miaétion is tuken on the basis of the sample result, there is in-
vithbly & risk that the action may be unsuitable; it is the business of

, :-'\ta.tistics to caleulate sueh risks,
W There iz an attitude that in some eircumst
be rum and that then the lot must be tested 4 foto. The fact that

ances such risks can not
serjous aceidents and even disastors aceur shows that we ean not elimi-
nate all risks from life, but, it is truc that there are circumstances in
which risks must be reduced to sueh g low level that it is imprac-
ticable to evaluate them by ordinary statistical ealeulations, None of
et 1s prepared to travel by acroplanes inspected on a system that con-
serously leads to uny appreciable risk of the machine failing, But most
factory Inspection systems are subjeet to human fallibility, and this
58
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sometimes introduces rigks that are comparable in magnitude with
statistical risks arising in sampling schemes. In more than one actual
experience a lot of articles has been subjected to 100 per cent inspee-
tion for sorting into defectives and non-defeetives, and subsequent
re-inspection has disclosed many defective articles among the “non-
defectives” of the first inspection and many non-defective articles
among the “defectives.” In such circumstances a reduction in the
amount of inspection made possible by the adoption of a sample
scheme, with the resulting improvement in the quality of the inspee:
tion, may reduce inspection errors by =0 much that the sample selfeme
gives inproved centrol in spite of sampling errors. The non-statistical
risks bave not been studied systematically, and they must hefeft for
special investigation. We must assume that the quality,bf ihepection
is perfect and deal only with the statistical risks assdciated with the
use of satples, \/

Aetion as a result of inspection may be a simplethoice between the
alternatives of acceptance and rejection, the ;}lternatives may &also
include taking a further sample or subjedtinig the lot to 100 per cent
insgpection for the replacement or rectiﬁéatibn of defective articles, or
some complicated quantitative adjustirerit may be made at some sub-
sequent process.  The eomplete sgk’)jéci covering all these possibilities
would be vast and has not been £iitly developed. Even so, the part that
has been developed is considfrable, and here we deal with only a few
simple situations for thgi'phrpose of introducing the main ideas and
quantities used in sanfpling inepection.

Our discussion willbe confined to terms of the sampling of articles
or manufactured @ieces, but the thicory applics equally to statistieal
individuals or\:sub-sub-groups as described in the first seetion of
Chapter 4. /<&

The simplést situation is one in whieh & “producer” offers a lot
whiciy{:‘ge “eonsumer” either aceepts or rejeets. You will have no
difficalty in gencralising these terms. The producer may be a vendor

f Paw materials or a manufacturer; the consumer may be a manufac-
tuTer who uses the products in his work or the ultimate consumer; and
the two may belong to the same or separate concerns.

Inspection by Measurable Quantities
The exposition of this secticn is based on an example taken from a
paper by Mr, W, T, Hale.* Mr. Hale's data arc used to expound the

*“A statistical sampling plan for refractory produets with speetal reference to
sifiea bricks,” Transactions of the Ceramic Sociely, Vol. 46, 1947, p. 147.
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prineiples of sampling, not to expound his scheme; for & full discussion
of his problem you should refer to the original paper.

A property of the bricks that interests the consumer is the specific
gravity, which is required to be low. Mr. Hale suggests a sampling
inspection scheme of the simplest possible type (viz., that 4 bricks
should be tested from each lot—in this case a load; if the mean specific
gravity of these 4 is less than 2.365 the lot should be accepted, other-
wise it should be rejected). Let us consider the consequences of such
a scheme. In practice, one wishes to speeify a scheme to satisfw'eer-
tain conditions, but it is casier for our exposition to work jf the op-
posite direction. O

[ have calculated from the data given in Mr. Hale's paher that, when
the effects of systematic variations between and withi‘z{ kilns are elimi-
nated, the standard deviation of specific gravity 80,0132 unit, so that
the standard error of the mean of 4 hricks is, oy equation (2}, 0.0066
unit. This is the standard error with which agample of 4 bricks esti-
mates a lot mean, provided that (1) th"’lot is comprised of all the
bricks made at one firing in one kiln, (Zhfhe 4 bricks are always taken
from the same positions in the kiln, and (3) the systematic position
effect is known. This is referredsfg*later, in Chapter 10 (p. 120).

Now suppose that many lotsare presented, each with a “true” mean
epecific gravity of 2.358 say an@ that 1 satiple of 4 is taken from each;
then the frequency distribtion of the sample means from these lots
will be the distributigp’i}\ the upper part of Fig. 12 centred on 2.358.
The proportion of Agads that will be accepted is represented by the
area under the fréquency curve to the left of the ordinate at 2.365; this
area i boundedh¥ a thick line and may be caleulated from an extended
version of Fable TII. The ratio £ = 12.365 — 2.358) = 0.0066 = 1.08
and a (frofd the extended tables) is 0.145, so that the proportion of
ai'ca\tQ\tfhe left of the bounding ordinate is 0.855. This is plotted
agaiust the true mean for these lots, the population mean, in the lower

" :}}sgrt of Fig. 12, the point being marked by a cross. The fraction 0.853
¥ the probability that any load having a mcan specifie gravity of
2.358 will be aceepted aceording to the speeified sampling scheme.

The distribution of means for samples from lots having a true mean
Df 2.374 is also represented in the upper part of Fig. 12, and the proba-
bility of acceptance of 0.087 is plotted against 2.374 in the lower part.
Corresponding probabilities of acceptance for other values of the lot
mean can be similarly deduced, and when plotted they fall on the curve
shm\'r} ir} the lower part of Fig. 12. This is termed the operating char-
acterisiic {or OC) curve of the sampling scheme, and it gives a complete
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statistical description of the consequences of the scheme. The proba-
bility of aceepling a ot of bricks ean be read directly from the diagram
if the true mean is known, and the probability of rejection is one minus
the probability of aeceptance.
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w\:l“\‘..r'ém Fig. 12 we sce that any lot with a true mean specific gravity
\0}' 2.35 or less is almost sure to be accepted, and any with a true mean
greater than 2.38 is almost sure to be rejected; lots between 2.35 and
2.38 have a good chance of being accepted, and those between 2.37 and
2.38 have a poor chanec of being accepted (or a good chance of being
rejected) ; between 2.36 and 2.37 is a region of great uncertainty, the
lot huving a moderate chance of acceptance. The effect of the errors of
random sampling is to produce this region of uncertainty or poor dis-
crimination between lots with low and high mean specific gravities;
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the greater the errors the broader i the region of uneertainty. For
perfect diserimination with no sampling errors, the operating character-
istic curve would be like this y the probabifity of aecoptance drop-
ping suddenly from 1.0 to 0.0 at a value of the lot mean that distin-
guishes good from bad lots.

It is not feasible to make use of a whole characteristie curve, and
g0 we confine attention to one or two polints on it Let us lock at
things first from the cousumer’s point of view. Tle would prefer,not
to aceept lots with a high nean specific gravity but, knowing thaghcer-
tainty is impossible, is willing to run & small risk of accepting(fots with
a high mean; this is termed the conswmer’s risk, and the r-?N'espondin.g
value of the lot mean is the conNumer's safe point, Foh a“consumer's
risk of 0.1 the safe point is 2.3735, and this point is m:}rk‘éd on the OC
curve in Fig 12, The probability of accepting a lufd™vith a true mean
greater than 2.3735 is less than 0.1, and in thiszense the consumer is
safeguarded by the schome against accepting Yotz as bad as or worse
than this; he is fairty safe to assume that, tlie mean speeific gravity of
bricks in aceepted loads will be less thand@¥73a.

Generally, if the sampling distribufion is Normal and a low value
of the variable ig required, it car;,.bé. ghown that

Consumer's safei'ﬁ(;fnt =L+ {{, X8E) (6
where L is the limiting samplé v
tion and acceptance

t: is the Norr%{déviation corresponding to the given consumer's
risk, as givent by Tahle I11
8.E. is the standurd error of the mean.
X

alue on the bordertine between rejec-

Here, for gopick of 0.1, ¢, — 1.28, SE. = 0.0066, L = 2.365, and the
consumeat’y ¥afe point = 2.365 + (1.28 % 0.0066) = 2.3735.
In firg stice, of eourse, the consinmer's
a jg}jrtio-ri, and the limit 7 is dedyecd from equation (6} to give the re-
LUired safeguard. The cholee of the safe point is not difficult in prin-
\ Piple, if we have sufficient technieal information. TFor example, the
level of specifie gravity above which un ndividual brick would be un-
satisfactory in service, and hence a defeetive, is known: and, from a
study of the frequency distribution of speeifie gravitics, the mean
specific gravity eorresponding to an acceptably. low fraction of defee-
tives ean he stated; this would be the consumer’s safe point. The
choice of the carresponding risk is alseo a matter for the teelnician
rather than for the statistician, but it is more difficult. If the conse-

risk and safe point are chosen,
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quences of aceepting unsatisfactory lots ave serious, the risk will be
tow, but no attempts have been made to establish such risks objectively,
and the cholee is based primarily on subjective judgment. A risk of
0.1 is quite commonly acceptable. Until there is a firm basis for choos-
ing the risk, the design of a sampling scheme can not be truly scientific,

In the foregoing, the standard error of the sample mean (and hence
the sample size} is taken as given, and within very wide limits, what-
ever the standard error, an acceptance/rejection limit can be found to
give the consumer any required safeguard. When econsidering thHeN
reasonablenesz and economy of the scheme, the sample size must De
taken into account, and to do this we must now look at thing’s‘fl‘\mn

the producer’s point of view. »

The producer wants to aveld the rejection of loads ofsbrmkc but is
willing to run & small risk of rejection, called the prodw::@'r s risk, which
for the sake ol example we may put at 0.05. The cormépondmg proba-
bitity of acceptance is 0.93, and from the OC enrve (Fig. 12) we see
that the corresponding lot mean specific grwits\z’is 2.3545; this 1s the
producer’s safe point, It is a safe pointdmbhe sense that, if, perhaps
with the aid of quality control charts, ¢ Al ays produees bricks at a
mesn level of speeific gravity, he runs»enlv the aceeptable risk of having
each load rejeeted; in our 9‘{8.1’111)]@ m‘dy 5 per cent of the lots will be
rejected. A

Generally, if the samplmw dl%trlbutmn iz Normal and a low value
of the variable is r(‘qunr{d\\\e have as a complement to equation (6}

2

the following: <& -
Pruduccrs safe point = L — (& X S.B.} {7}

where ¢, is the \m m’Ll deviation corresponding fo the given plodueer 5
risk, as glveqbv Table ITL. Tsually L will be given by the consumier’s
r9QL111~ern #8: the choice of the produeer’s risk is subject to the same
genergh sonsiderations as that of the consuer’s risk.

By comblmng equations {8) and (7) we see that

N

Eifference between consumer’s and producer’s safe points
~ .+ L)SE ®

Equation (8) shows that. as a result of sampling errors, the producer
must make to a higher quality (a lower mean specific gravity} than the
consumer feels safe to assume in using the bricks, and this difference
will usually eause economic loss or add to the ultimate costs. For
example, the recduction in specific gravity of the bricks requires more
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prolonged firing.  This loss ean not be reduced by reducing ¢, and £,, for
that will merely involve inereasing the risks, and sueh would be an
ostrich-with-its-head-in-the-sand policy. The only way is to reduce
the standard error. The adoption of a good sampling technique ean
often go'some way towards this by reducing the value of the standard
deviation s” that goes inte equation (2). But, for a given material
sampled by a given technique, the standard error is determined by the
number in the sample. The larger the sample size, the costher is the
inspection, but the emaller is the loss due to the difference betweed the
consumer’s and preducer’s safe points; it is easy to see thatamsually
there will be a most economieal size of sample. It is dquét\fu} that
costings investigations are often done to determine this gize; but per-
haps they will be in the future as the principles of sampling becowne
more widely understood. 0

In the absence of knowledge for determining. a6 ,}ptimum gampling
schieme, it is necessary to chouse the various basle quantities in some
way, perhaps by estimation from incomplete/tiata, or by inspired guess-
Ing, or even arbitrarily; then the calculajcith ‘of the details of a scheme
is easy. Thus, if the producer’s and edn¥mer’s risks and safe points
are known, equation (%) can he used o determine the standard error,
and, if the standard deviation is.lﬁc{giown, the sample size can be caleu-
lated according to equation |'2.)}1‘ Then either equation (6) or equation
{7} ean be used to ealeulate™., and the sample scheme is complete.
For example, suppose that the consumer’s risk is 0.05 (¢, = 1.645}, the
eonsurner’s safe point'\ia /2.37, the producer’s risk is 001 (¢, = 2.33),
and the produccrjs\safe point is 2.36. Then from equation (8),
0.01 = 3.975 X S} and SE. = 0.0025. The standard deviation is
00132, and 36/ necessary sample size is n = 0.0132% — 0.0025° =
5282 = 287fepprox.}. Then, if we use a sample size of 28 exactly,
the standa¥d error is 0.0132/4/78 — 0.00250, and, from equation (7],
L = 237"~ (1.645 X 0.00250} = 2.366 units of specifie gravity, This
\\11[ hot give exactly the specified producer’s safe point because of the

sapproximations used in the caleulations. In practice there would be
fome “Juggling” with the quantities to give a convenient sample size
m the neighbourhood of 28, perhaps 30, and a convenient “round”
figure for L.

You may wonder why it is neeessary to go thirough this elaborate
procedure when there is an elemient of guess-work or judgment in the
choice of some of the hasie quantitics, and whether it would not be just
as good in such cireumstances to choose the final scheme directly by
estimation. The kind of procedure outlined is best; it gives the
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hest scheme that can be devised in the light of such knowledge as
oxtsts at the time, and it focusses attention on the points on which more
data are required.

The equations of this section are limited to the case where assurance
is required that the lot mean value is below some limiting value; it is
not difficult to modify them for the case where a high value of the mean
is preferred. The situation is somewhat more complicated when the
lot mean is required to be between two limits, but the same general
principles and ideas apply. .

When the quality of the lot is specified by one of the measurgs, of
variability, the same general considerations apply as for the ‘méan.
The sampling distribution of the measure enables the operating char-
acteristic curve to be calculated, and this can be interpfeted as any
other operating characteristic curve, Indeed, the situation™will usually
be much the same as for the mean specific gravity{of bricks in that
the sampling scheme will be usually required to pretect the consumer
against the value being greater than some chofén Timit; but equations
{6} to (8) will not apply because of the diﬂ‘en}nce in the sampling dis-
tribution. It will usually be more difficul$"to find technical grounds
for choosing the various acceptable LlrmLs of variability.

The problem of dealing with thetsituation when quality is specified
by more than one measure is tog'emplicated to be dealt with here.

Yeu will notiee that the standard error depends on %, the number in
the sample, and not on t?e}proportion the sample 15 of the lot. The
relation between the dize of sample and that of the lot becomes 1m-
portant only when aMarge proportion of the lot 18 ingpected.

N\

Acceptance /Reje:o?ion Procedure for Fraction Defective

When the-qadlity of a lot of articles is nssessed by the fraction that
are “defc&t{?’e”’ (in the generalised sense described on p, 10}, sampling
Sc'hem'i‘é:ana]ogous to those just described can be evolved. In the
Si{{lpiéét farm of scheme, & sample of definite size, say », is taken and
dnspceted, and the lot is aceepted if there are up to, say, ¢ defectives,
and rejected if there are more than ¢, where ¢ may be 0, or 1, or 2, or
any number less than n. The total consequences of such a scheme are
entirely deseribed by the operating charactetistic (OC) eurve. The
number ¢ is termed the acceptance number. '

Tf the number in the lot is large compared with that in the sample
(say more than 4 or 5 times as large), the probability of accepiance
may be computed from the theorctical sampling distribution known as
the binomial distribution, which leads to the following formulae:
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Probability of aceeptance of lot =
{1 =27 when ¢=0,or
T ~pV+ap'(l1 —p'y ' whene = 1, or (9

. nn —1
(1 =)t np'(1 — p"y 1t "—(—2——);0’2(1 — )% whene =2
and so on, where p’ is the fraction defective in the lot.  From equa-
tions {9} the OC curve ean be ecaleulated for any shmple sampling
scheme (ie, for any given value of n and cy. It will be nub{:}}\thnt
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whereas we requite three quantitics to determine the OC curve when
the quantitysgvmeasurable—the mean, the standard deviation of in-
di\'idualg\ﬂ"hd’the sample number—we need only two when the classi-
ﬁc;ttinp{i& for defectives—itlie fraction defeetive in the lot and the
samp}g’;nmnbcr. This is & result of statistieal theory,
,\S.g\nc operating characteristie CUrves are given in Fig. 13, and, as
“before, we may choose consumer's and produeer’s risks and read off
the corresponding safe points.  The producer’s safe point is fermed the
acceptable quality level {(AQL) and the consuiner’s, the ot tolerance
per cent defective (LTPD). In some writings these definitions are
limited to values associated with specified risks.
Let us choose for_ histration a produeer’s risk of 0.05 {probability
0‘f aceeptance 0.95) and g consumer’s risk of 0.1. When the sample
s1z¢ 1s 20 and each lot is accepled 1f the sample contains upte 1 (or b
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per cent} defective, the producer’s safe point is at about p* = 0.01 and
the consumer’s is at about p’ = 0.115 (bearing in mind the values of
the chosen risks we may say that lots with fewer than 1 per cent de-
fectives will probably be aceepted, those with more than 111 per cent
will probably be rejected, and those with values in between will have
g very uncertain fate). Clearly this scheme iz not very diseriminative.

If 2 is increased to 100 and ¢ is 20 {ie., iz retained at 5 per cent}, the
OC curve approaches somewhsat more closcly the ideal for certain dis-
erimination, falling more steeply from a high to a low probabjlity®of
acceptance, and the two safe points are closer together at .p:;lwb.OZS
(24 per cent} and p” = 0.09 (D per cent). We arc now quite used to
the idea that increased sample size makes possible imprpved discrimi-
nativn between good and bad lots. \\

it is interesting to see what happens when ¢ alpg€ i changed, n being
kept constant. Figure 13 gives OC curves fer\n = 100 and e = 1, 5,
and 10. The zafe points are: K7y

L
Froducer’s 0.05 Bafe Point A ‘ @onsumer’s 0,30 Rafe Point

e= 1 3 =0002 AQL =02\ .79 =0040 LIPD < 40
e= 5  p =002 AQL =25, ¢ =0000 LTPD = $0
=10 P =0065 AQL =¥5 2 =0155 LTPD = 155

The effect of increasing ¢ isto’ vaise both the consumer’s and the pro-
ducer’s safe points for givem risks, the former more than the latter for
the small values of ¢ghat are commonly used, so that ihe range of
values of p in the reg%n of uncertain fate is inereased.

It i= useful tpybe able to work out the consequences of a given
sampling schefile defined by n and ¢, as we have done in Fig. 13, but
it is more, }.{:e}tul to state the requirements and determine the appro-
|riate \Mme It is not difficult from published charts and tables of
the bmmnmal distribution to deduce a foll range of values of n, o,
andPt corresponding to given consumer’s and producer’s risks, so that,
e two values of 9’ are specified, n and ¢ can be defined.  There are
to publizhed charts or tables specifically arranged for the type of
simple sampling described here.

Sinee n and ¢ can vary only in units, it will not often be possible to
find values corresponding exactly to ehosen producer’s and eonsumer's
saie points and risks, but this presents no practical difficulties.

It will be noticed again that, provided the sample is small compared
with the size of the lot, the number in the lot does not enter into the
caleulations; the sample sige rather than its proportion to the number
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in the lot determines the power of the seheme to diseriminate hetween
good and bad lots.

Acceptance/Rectification Procedure for Fraction Defective

All the praetices and terminolugy of sampling owe much to workers
associated with the Bell Telephone Laboratories, and notably to Mr.
H. F. Dodge and Dr. 4. G. Romig, but this section owes almost Cvery-
thing to them, .

The schemes deseribed in the previous section are sometimes ‘rem}ed
batch sentencing schemes as opposed to acceptance/rectificdbion or
screening schemes. The latter are specially appropriste whern Tets are
presented in a stream, as in magss production in a factoryy I for each
lot the sample has ¢ defectives or fewer, the lot is accépted or passed
forward without change; if the sample eontains moré thian ¢ defcetives,
the lot is subjected to 100 per eent inspection, dnd defective articles
are either replaced or eorrected {rectified) befdre it is passed forward.
Cperating characteristic curves can be caledlated from equations | 9),
and hence the safe points eorregponding tnx\rérious risks, but when the
lots are presented in a stream ty ‘o new(ideas and quantitics arise.

The first is the average sample r}ur’nbér (ASN}. The probability of
acceptance is the proportion of lotg,that are passed forward as a resuit
of sample inspection only, for wl'ijr'?h the sample size is #; the remainder
are fully inspected and have ai"‘sample” size of V, sny, where N is the
number in the lot (this i€the first time we have had to consider ).
In the long run the average sample size {or number—the term average
sample size does net fend itself happily to abbreviation) is the weighted
mean of = and N, Glje weights being the two proportions. If p’ is very
low, few defeqti’yes’ appear in the samples, most Jots are accepted with-
out full inspeetion, and the ASN is little greater than #; 8% p” increases,
the ASN inereases, until at »" = 1.0 it becomes N (it becomes near to
N longbefore that!). :

t[fhfére are a large number of sample schiemes {combinations of n and

el that give approximately the same consumer’s safe point (or LTPD)
NJora given risk. For example, it can easily be seen from Fig. 13 that at
& 118k of 010 a safe point of p = 0,12 is given whenr = 20 and ¢ = 1,
and when 7 =100 and ¢ = 7 {approx.). In acceptance/rejection
sampling an additional eriterion, for choosing one among the many
schemes that satisfy the customer’s requirements, is provided by the
producer’s safe point {or AQL), In acceptunee/rectifieation inspection
this has a Jess important meaning, since no lots are rejected.  The
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alternative additional eriterlon, used by Dodge and Romig in their
Sampling Inspection Tables, is the minimum ASN. TFor ezch combina-
tion of » and ¢ satisfying given consumer’s requirements there is a dif-
ferent ASN-p” eurve. In the Dodge-Romig schemes the value of 7 in
the general run of lots is presumed to be known within fairly hroad
limits {multiplied by 100 if i+ termed the process average per cent de-
fective) ; for each range of p' one combination of n and ¢ satisfying
given consumer’s requirements has a lower ASN than all the others,
and that one iz chosen for the scheme. . It involves the least total
amount of inspection and, assuming that it costs the same per a.rnglc
to inspect a sample as the lot, is the most ceonomieal scheme\ With
thiz criterion, therefore, it is only ncecessary te speeify the ('Onbl‘lllel
requirentents, which in the Dodge-Romig tables are desp‘ubed as the
lot tolerance per cent defective eorresponding to s rlﬂl\(}f 0.10.

Another nmew quantity characteristic of acceplance/rectification
schemes provides a criterion alternative to the conitimer's safe point—
the average outgoing quality (the AQQ). ThisGs the average fraction
{or percentage} of defectives in lots pa%sqd”far“arcl for a given frac-
tion p’ int lota presented. Some of the lots will be paszed forward with-
out change as & result of the first &am]‘!lc inspection and will have a
fraetion p” defectives; other lotg sl have been subjected to full in-
gpoeetion and rectlﬁc(ztzon and will have zero defectiv cs; the AOQ will
therefore be something Ieaithan p’ {or, as a percentage, less tha.n
100 p7).

As a simple cmmple\l}t us suppose that the sample size is n, that
¢ =1, that the numbgzr in the lot is large compared with n, and that
all lots prctentedﬂh%a a fraction of defectives equal to p”. Then ac-
cording to eq\ahons (8) the proportion of lots passed forward without
change is \

) (I — Y +ap't — )"

amd\the average fraetion defective in the lots passed forward is p’
¢ r - . - .
G)nes this propertion plus zere times the proportion of lots rectified;
that is,

AOQ = p'(1 — p')* + np’*(1 — p/)" {10}
when ¢ = 1, Corresponding equations may be deduced for other values

of ¢. The eurve of the AOQ plotted against p” is for a reetifying
scheme what the OC curve is for an acceptance/rejection scheme. Such
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curves forn = 20, ¢ = 1, and for n = 100, ¢ = 1,5, and 10 are plotted.
in Fig. 14.

The line AOQ = »" represents what wonld happen if there were no
inspection; all the curves fall helow it For any given value of n and
¢, the AGQ curve follows the line at first, since very few lots are sub-
jeeted to full inspection and rectification. As p’ increases, the propor-
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tion of rectiffedlots inereases, and so the curve falls farthor below the
ADQ = pAline. At first the effect of the reduction in defectives due
to ref:iii Ation is less than that of the inerease in p’, and the A} valie
risess\But after a certain valye of p” the effect of rectification predoni-
Mn;ﬂ;té;-:’, and the AOQ falls. For any given 2 and ¢, therefore, there is a
N haximum value of the AOQ beyond which the average fraction of de-
feetives passed forward ¢an not rise, whatever the fraction of defectivos
n the lots as presented. Thie s the average outgoing quadity limit,
or the AOQL, and s sometimes preferred to the lot tolerance as an
assesstnent of the long-rup quality of productinm,
Again, for approximately the same AOQL, there are many coin-
binations of n and ¢ feg, n =20 c=1 gnd n = 100, ¢ = 4 have
AOQL = 0025 approx.), each having a different ABN-p" curve; and



AMULTIPLE ANID SEQUENTIAL BAMPLING n

for cach range of p* that combination having the lowest -ASN defines
the chosen scheme.

Thus in order to use the Dodge-Romig single sampling inspection
tables it is necessary to know: the process average per eent defectives
and the number in the lot; it iz necessary to choose (on technical
grounds) ; the lot tolerance per cent defectives eorresponding to a con-
sumer’s risk of 0.10, or the average outgoing quality limit. The tables
then give the values of » and ¢ that minimise the total amount of\
inspeetion, Moreover, if the lot tolerance is chosen, the curre\pondmg
AOQI. is given, and vice-versa. O\

Engineers, especially Dodge and Romig, have, by their \\'ork\added
a new view pomt to statistieal sampling. The classical uew Tegards
each sample separately az belonging to a scpuarate lot or pruldthI‘l
Podge and Romig have tanght us to think of a aamphng procedure
as a kind of sereen through which factory produetion’is continucusly
passed and which modifics the average quality s\

. (N
Multiple and Sequential Sampling x\

The next stage in complication aftée)single sampling iz double
sampling. Aeccording to this pl‘OCEdU«l‘,é:,:{lS a result of the inspeetion of
a first sample the lot may be act‘e})j{gﬁ or rejected without further test,
or a secord saniple may be tal®n on the result of which the lot is
aceepted or rejected.  If thoftbeme is an acceptance /rectification one,
full inspection with rcctlﬁc(}hon is substituted for rejection.

When the quality ofifhélot is specificd by the mean of some meas-
ured quantity, such gy the mean specific gravity of bricks, a low value
of which is requirédy the lot is rejeeted if the sample mean is above a
certain value Lj, Bay, or aceepted if it is below another, lower, value
Liay or if thesdaiple mean is between I, and L» a second sample is
taken, anf«tﬂm lot is rejected if the combined mean for the two samples
is abowg\ wdrew value Ly, say, or accepted if it is below La. For a given

a,]ue\of e lot toean the prob‘lblllf\' of ultimate acceptance by such

s0)€me can be ca leulated, and lience an OC curve be deduced, and in
palticular consumer’s and producer’s safe points, Curves of the A3l
can also be dednced, since some lofs will be appraised on the first
sample of ny, say, whereas others will require two samples of ny and n..
The chicf advantage of such over a single sampling scheme is g redue-
tion in the average sample size for given consumer’s and producct’s
safe points. This happens beeause a decision can be taken on one
sample if the lot is either very sood or very bad; the second sample
is taken only from those lots that are moderately good or bad and

F
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require ‘more careful diserimination. The schewme to choose iz that
which gives the lowest ASN for the requived protection. Since L, Fis,
Fiay m1, and na can be adjusted (not independently, and only within
limite), the determination of an optimum scheme is a fairly compli-
cated business, and it has not been done extensively or systematically,

Double sampling schemes for the fraction defective have been mare
used, and the Dodge-Romig tables for acceptanee‘reetification imspec-
tion include such. ' )

The Dodge-Romig double sarupling procedure is set oup sohomati-
cally as foltows: + : O ’

ad

——— s

]‘Im. ect & first sample of » |
| 1o spec ‘ samp 1 M'\i"
+ 9

If the number defeetive picess in thy s;nnple
J \\.
i YK ' [

does not exceed ¢ exceeds ¢y but doedmotoxecnd 9 exreads o

‘L. W

Inspect = seqon}i.shmp]e of ny pieceﬂ
[ 2

N\ SN
I th&umber of defoctive pieces
Amthe two samples combined

¢ \J I
\V_— —
N I
dqés”not oxeeed oo eXeeads o

Lo l
\‘. !— Inspect, all pieces remaining in thc—!
'\w*\c(:ept. the lot lot and correct or replace all defee- ;
; ..s\ . tives |
Ty L — |

\”\A double sampling scheme has, in addition to its OC eurve and lot
Ltolerance, its cuyrve of ADQ, its AOQL, and ite ASN curve (the ASN
depending on the proportion of lots that are aceepted after testing one
lsamp]e of ny, aceeptod after testing two samples of 7y and ng, and sub-
J(.acteq to full inspeetion and rectifieation). The Dodge-Romig tables
gve for various lot sizes and ranges of process average valuces of ny,

T Reproduced by permission of Bell Telephone L horatories, Ine., from Sampling

Iuspection Tables, by H. ¥. Dodge and K. ¢ Romiig, published by John Wiley &
Sons, Inc., 1044 .
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ey, and ¢z that minimise the amount of inspection and give either vari-
ous chosen lot tolerances with a risk of 0.1 or varions choson values of

Inspect a sarnple
of ny articles

I
If the quality
1

1
exceeds
L,

exceeds L7, but does
not exceed L,
!
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If the mean quality
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1

1
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L,

E
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not exceed L.
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the AOQL. Other tables for double sampling schemes are given in the
book Sampling Inspection referred to in the bibliography. In this book
the A8N i the average sample number for acceptance or rejection {not
rectifieation), and account is taken of the reduction in sample size made
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poszible if the Inspection is curtailed immediately the acceptanee num-
ber of defectives is exceeded by unity,

It is easy to imagine an extension of the idea of deferring final judg-
ment on a lot to the adoption of triple, quadruple, or ligher multiple
procedures, which may cven extend to the Hmiting form i which an
assessment is made after inspecting each article. These nmultiple pro-
vedures are termed sequential sampling schemes. A typical sclieme is
set out in Fig. 15; it is closed by foreing a decision to necept or wejeet
after a certain number of samples, ¢\

The theory and practice of sequential sampling for accepl::s}ncé_..frejec-
tion was developed during World War II. Each seliemedis its OC and
ABN curve, and optimurn schemes have been wm-kecj f;ﬂ:lt, ﬁogether with
convenient graphical procedures, They carry praéticully to the limit
the economy achievable in the minther of a’tr’[i(‘]cs.ilfspcf‘ted for a given
degree of control by continuously examining reshlts as they arcumulate
and coming to a decision at the earliest pgssible moment,

Some people prefer single sampling¥sghomes on account of their
administrative simplicity. Others profer double sainpling sehemes
purtly because of their economy bl partly because it i sometimes
psyeliologically satisfying to thefp%zwtical man to give the lot & sevond
chance. Sequential 5011«:mes,faj*e considered to require most care and
supervision in operation, but, where the inspection or testing costs per
article are high, utme teconomy in the number of articles inspected
13 important, and o‘gég“outweighs administrative convenionce,

You should pesyead Chapter 4, particularty the section, “Sampling
Metliod,” 3nd:1\'cmember that all that has been said in this chapter
about thg 's:a\npiing of articles and picces applies to all “statistiesl
individaals” as deseribed in Chapter 4, and that all that has been said

in Cliapter 4 on sampling for quality control applies to sampling for
rogtyte inspection,

N
%
\ }



PART II. INVESTIGATION AND EXPERIMENTATION

Chapter 8. EXPERIMENTATION AND THE STATISTICAL
THEORY OF ERRORS

Routine gquality contral in the factory requires the backing of teehy
nical research and investigation in order to discover the tecl*{ﬁt«al
conditions neccssary for the economical production of goods ef the
required quality, to determine what factors to control ;md Jhow to
control them, and to discover assignable causes of uncontrol Investi-
gations range from empirical experiments made on the‘fattof}' floor
to fundamental research at the university or in the\research institute,
but they are all based on the scientific methed Q@ar}mw a few factors
in & controlled way and inferring from the re@its what are the causal
effects of the factors. "N\

Such inferences are often Impeded hy experimental errors. When
working under the best conditions ins aVlaboratory it is impracticable
or impossible to make the e:\penmental factors vary exaetly as planned
and keep the constant factors ah§olutcly constant; the resulis are the
effeets of & more complicatedgPstem of causes than that planned: they
inchide the effects of exygex;ﬁnental errors. In the laboratory these
errors ean often be redhq‘ed to negligibly small proportions, when they
cause little or no diffighity; it is an important part of the experimenter’s
art to bring about {this state of affairs. Buf in technical investigation
the effects of emelmental errerg are often comparable in magnitude to
these under fny'estigation, and they have to be taken into aceount sys-
tematicallyy The only known way of achieving this is to apply the
bta‘rl%tleal theory of errors, described in this chapter; a discussion of
the €S3Umptions involved in its practical application is left to the next
ﬁkﬁaf)t"cr. You will frequently ask why various steps are taken in de-
veloping the theory, but for an answer you should consult & text-book
on statistics,

The Principles of Significance Testing
Table VI gives the results of some experiments made by the third
Lord Rayleigh to determine the density of nitrogen prepared in various

ways; the figures in the body of the table give the weights, in unspeci-
75
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TABLE VI

WEIGHYS oF NITROGEN FROM VaRloUS SoURCES

[
Source / Nitrie Nitrous | Ammonium Air Air
’ Oxide [ Oxide Nitrite .
i
Redueeed by: Iron Iron Iron Tron ! Copper
Date Nove-Dee. | Dee, Jan. Dec, AugLept.
1893 1803 1884 1893 . 1802
_ S N AN
ZINS ¢
2.20816 | 2.20869 | 2,2084¢ 2.300864 V7 2.51012
2.20800 | 2.20040 2.20880 2. 31061 2.21024
2.30143 2 300 2.81026
2,30182 2381017 2.31027
\/ 2.31033
—— . ——
Mean 2.29947 (a) AN 231004 B)) 231025 @

fied units, of successive determinsyt’ii:}ns made under standard conditions,
of nitrogen in & standard bulby86 that variations in welght are due to
variations in density pluz the uncontrofled variations we term experi-
mental error.  The problé is +o decide whether the source affects the
weight, and henee th'e{tlénsity, of the nitrogen. Rayleigh decided from
these and similar feSylfs that it did: that “atmospheric” nitrogen had
a higher clensity than “chemical™ nitrogen; and thus he was lod to the
discovery of t\he Tarer gases in the atmosphore, Let us examine the
data somewhat as they night have appeared to Rayleigh belore he
reached this' conclusion,

Wemey regard the first three eolumns of figures as one scries for
nitrdgen reduced from ehemieal sourees by iron, and those in the next
:t.‘{u'bolumns as two series for nitrogen reduced from the stmosphere

<\;by iron and copper respectively.  We shall refer to these series as {a},

(6), and (¢), The data enable us to separate the cffects of the source

and of the reducing agent.

First, by comparing {a) with (b) we see. the cffeet of source alone.
The results for {q) range from 2.29816 to 2.30182, thase for {b) range
from 2.30986 to 2.31017; there is no overlap between the series, and the
difference hetween the means {2.31004 — 2.29947) is much larger than
the spread for cither series, Comnonsense tells us that experimental
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errors {which are measured by the spread within each series) could
not account Tor the difference between the two series; that nitrogen from
the atmoesphere 15 really Licavier than that from chemical sources.

When we compare (b} with (¢) we see that the two series overlap
ithe ranges arc 2.30936 — 2.31017 and 2.31012 — 2.31035), and that
the difference between the means {2.31004 — 2.31025) 1s much the same
as the spread within each series. A eautious commonsense would tell
us that the results give no clear evidence that the reducing agent af-
fects the density of the nitrogen reduced from the air, or a rash eoms
monsense that the redueing agent has no effect.

How does the statistician handle this kind of situation? Fop Table
VI it seems to be hardly necessary to consult the statisticiad but the
results of technical experiments are not always as clear- cut and then
we may require to use statistical arguments. Tt will help” tb make them
clear if we apply them to Table VL N\

The statistician argues: let us regard the variations¥ithin each series
(due to experimental errors) as chance variaflons and test the Ay-
pothesis that the differences between the tifo“serics in each pair are
due to these chance variations. This caaNbe’donc in several ways,

First let us freat series {a) and {b] \by writing down the 12 results
in order of magnitude and =ub<:t1tutm<f for each value the letter a or b
according to the series it belongs .to. thus we arrive at the arrangement

aaaaaaabbbb

Of all possible arrang 11155 of eipht o’s and four &'s (there are 495 of
them) this is a very p%mr one. Only one other arrangement has the
same kind of pccuh‘mtv tliat which gives first the four b's and then
the eight a’s, W éxpress our recognition of this peculiarity by saying
that the pw\ﬁblhtv of chance giving such an arrangement is only
2/495 = DO, This is very low; chance is unlikely to have given
the ~11‘r&ngement same factor other than chance is probably responsible
fﬂr Al distribution of the twelve values between the two series. That
is t,he atatistician’s verdict, and that is as far as he goes, He does not
sy what the other factor is.

You may object that each cne of the 495 arrangements is in one way
or another unique, and that the same argument would establish it as
due to something other than chance. Only if the arrangement follows
a pattern corresponding to a factor of technical significance do we
accept it as possibly due to sometling other than chance. The above
arrangement of a's and b’s could be due to a change in density from
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series (a) to series (5). Other patterns might have sorme othier teelini-
cal significance; fur example,

a b aabaaebdbaetdb

If an experiment gave this, we might be sceptical of it being due to
chiance, although it is hard to say what it would be due to.
When we compare series () and fr) in the same way we have

b b b ¢ b c e e ¢ ~

We need a single figure to characterise this kind of arrangemenh” For
this Miss Swed and Dr. Eiscohart * have proposed the nuniberiof runs
of the same leticr, Thus, in the above there are 4 1'1|ns,'jhe three b's
counting as one, the one ¢ as another, the one b as a thi\f&i, and the four
¢’s 25 a fourth. This criterion satisfies comn'wpsfr]lsc. shice g low
number of runs corresponds to a tendeney for thelselies to separate as
they would do if the experimentally imposed\éhivhee in conditions af-
fected the density of the nitrogen.  The lowesfpossible number of runs
is 2; 8wed and Eisenhart Lave given pmlﬁibl ity tables for the varjons
numbers of runs, and from these we A that the probability, for four
b’s and five ¢’s, of chanee giving 4 rimd or fewer is 0.262. This is not
low enough for us to dismiss cligdpe ‘s the pussible factor, You will
note that we say “4 runs or feder,” which is equivilent to saying “as
great ur g greater degree of ({iﬁercntiation.”

When = statistician sybfegts his chanee hypothesis to the kind of trial
deseribed, he is said todost the statistical significance of the results. If
the verdict goes agg st .ch:mcc, the difference between the two series is
said to he statishically significant; otherwise it is statistieally not sig-

nificant.  As & jconvenient shorthand the words significant and not
signifieant 7 0ften used without the adverb, but the adverb shonld
not be fyradtten, for there is an mportant differcnee between.statistical

and t;}\v\haical significance, as we shall sce,
&

~The number of runs does not provide an entircly satisfacfory eriterion
w\:{}} the differentiation betsween the two series, 15} and {¢). There are
‘several arrangements with 4 yuns, byt they are all treated as of the
siane elasy, whereas some of them correspond Lo a greater differentiation
than others. Compare, for example,

bbbcbccac
and

'bbcccbbcc
* Annals of Mathematical Statistics, Vol. XIV, 1843, p. 66,
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The kind of effect we are Investigating experimentally would be ex-
peeted to affect most markedly the difference in means, which therefore
secmis to be a good eriferion of differentiation. Of the two arrange-
mentz of eight a's and four b's tliat provide complete separation,
namely,

¢ ¢ ¢ & a ¢ ¢ & b b b b

b bbb a0 a2 a a oz a a

the first when applied to the 12 results of Table VI arranged in ordeh >
gives the larger difference between the means for series (a) andctb).
This is the difference eorresponding to the setual arrangement it\’fé'ble
VI, and the probability of chance giving as large a difference j8’there-
fore 1 + 495 = 0.002. There are 126 possible arrangementsiof the 9
values of series (b) and {e) into two serics of 4 and 5"}'{5'}3écti\-‘ely, and
the 3 leading to the greatest difference between nichps, together with
the means, are O

X.\ o

bbb beecec (2:3f0?6—-2.31002)
e e c e c b b b b (231028231005

®

bbb oebocoe ol (231025-231007)

The last arrangement results fmiﬁ'tﬁe setual experiment and ig there-
fore special in that it is aping the three chance arrangements pro-
dueing the greatest diﬂeg@nﬁation. The probability according to this
test of ehance produciﬁi\tﬁe degree of differentiation between {b) and
fc) of Table VI, or ahgreater degree, is 3 + 126 = 0024, This is low,
and we now suspeéd that chance may not be a sufficient explanation of
the differencc.hétxi‘ecn scries (b) and (¢).

This test/bdsed on mesns is more diseriminatory than that based
merely p\n%fns beeause it narrows the class of arrangements that are
regardedids having a possible teehnical significance through using more
Of.«t\-hle\ information-provided by the results; it uses the actual values.
Kiéads us to suspeet a differcnce between series (b) and (¢} that the
rn-test dismissed as easily attributable to ¢hance. Even so, it is not
entircly sutisfactory. Forscries (e} and {b) it can never give a proba-
hility lower than 0.002; any twe sets of & given number of results that
{ail to overlap have the same degree of statistical significance on this
test, however widely they may be separated. This docs not satisfy
commonsense. A more satisfactory test is provided by the so-called
t test,
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The ¢ Test of Significance

Aceording to this test the results for each series are regarded as 3
random sample of an infinite population of resulis that could have
been obtained had the cxperiment been repeated indefinitely wnder the
same controls that were applied from November, 1893, to January,
1894, to obtain the results of Table VI Thix population is purely a
concept; nothing even remotely approaching it ean be realized pliysi-
cally owing to the limitations of hunan powers and physical materia\l‘\,;
and a set of experimental results ean only be likened to a slettiatical
sample by a strefeh of the Imagination. This for some peopl{ﬁﬁs been
4 stumbling-block to the application of statistieal theory ¥ physical
experinents. 1 find no such difficulty. The application{ias its diffienl-
ties, but they are not coneeptual.  Experience has ledkt@the claboration
of the theory to cover the kind of situation that Q8¢ in the life of the
experimenter and has shown that the guidance givel by such elaborated
theory is good. You shiould be able to regahthe results of Table VI
as a random statistical sample of cxperime}ﬁﬁf crrors, plus “real” var-
lations resulting from the experimenmll}; imposed variations; and
a8 this text develops you will agree\as to the reasonablencss of the
methods and eonclusions based cmj{t.h’is assunption as & sturting point.

A further assumption, of g m{’i}‘hemntic&l Kind, is that the frequency
distribution of errors in the jnfihite population is Normal in form.

Then in comparing sCrigsN@) and (b}, say, weo tentatively adopt the
hypothesis that they apdrandom samples from the same population and
caleulate the prubabhit; that ehanee would give a difference i means
as great as or grg:tt:m‘ than that observed, This test is shnilar to that
used abave, but:\it’is based on n different model—on samples from an
infinite pum{ﬁ;tﬁon rather than on arramgenients of o fAnite nwnber of
results, ¢\
51113}1'G§ that we take at random a pair of samples of #p and ng indi-

viduals from a population in which the “true” standard deviation is o,

aidythat the corresponding sample menns ave ¥ 1 and X, giving a dif-
\f@*“‘“"'“ in means of ¢ = X, — Xoo Hwe repeat such a sampling experi-

ment many times we pet, many values of o which may be formed inio a

frequency dist ribution, the sampling distribution of the difference be-

tween two means.  Theory states, and experience amply verifics, that
under our assumptions this sampling distribution is Normal with a menn
value equul to zero and a standuzd error given by the formula

J—L + i {11)
Vo, g

8Ly =4
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Thiz is the equivalent of the formula for the standard exrror of a single
mean [equation {2), p. 17). Thus, if ¢’ is known, the probability dis-
tribution of 4 is the same as that of

d
5_

= 12
S.E/ (12)

tabulated briefly in Tabic IIT (p. 8). Usually there is no prior reason
for suppoesing X to be greater or less than Xy, and a large positive value
of d (and hence of #) is equally significant with an equal large negative
value. The probability of d or ¢ exceeding any given value, pos'}tivq or
negative, is 2o, and this is used mostly in testing significanees. “For
example, the probability of ¢ exceeding twiee its standard etror (of
t being greater than 2) is approximately 0.05. )

Tsually, however, we do not know o, and so we usg@e ’best estimate
obtainable from the sample, which 8 U :

3 7.\2 ,'\\i"—z :
. le(x - X))+ BEB %) 1)

iy + a2 ;“2\

where X represents successively the inc’ijvi(luai values

X; and X, are respectively t.l:re teons of the two series

Z; means “sum over all th}é:csbservations in series 17

Z; has a corresponding.meaning for series 2

ny and ng are respectively the numbers of observations in the two

. 3
series. p \‘ .
Fquation (13) corfesponds to equation (1} (p. 7) exeept’ that in
{13) there are t1&’stims of two scts of squares in the numerator, and
in the denmnix{%i.ti;r appears the number of ohservations reduced by 2.
The latter guantity is termed the number of degrees of freedom, and its
use instgra\ % the number of ohservations results from a refinement of
Statis.ﬁib.al theory that can not be dealt with here and that is important
only"when 7y 4- 7, 1s small.
\ The estimate of the standard error of the difference now becomes

1
SEamo |t — (14)

(i3] g
I am adhering to the symbolism of the ASTM standards, distinguishing be-
tween “true” or populution values and sample estimates by adding a prime for
the former. In most statistical literature the population value is represented b}’
a Greek letter {cg., o) and the sample estimate by the corresponding Latin

Ietter (g},
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(note that #n; and n, appear here, not the degrees of freedom), and
becomes

d
B.E.4

In applying the test, sample 1 is usually taken as that with the greater
mean, so that £ iz usually positive,

There is a different probability table for ¢ as defined by cquation
(15) aceording to the degrees of freedom on which the standard. dé¥a-
tion is estimated, Table I1T being mercly the special case for aninfinite
number of degrees (which would be necessary to make the san‘apTe csti-
mate o equal to the “true” value of ¢'). Maost tables gl\’(} Julues of f
corresponding to a few chosen probabilities after the "manner of the
lower half of Table 1T {except that 2¢ = P, say, is gsed} Generzlly
any difference that chance would cause to be excé\ded with & proba-
bility of P is said to lic on the P level of .si,gmﬁf'ance and P may be
quoted as a deeimal fraction or a percentagx} A large difference be-
tween two means relative to its standagdrtor gives a low value of P,
and a low value of P iz said to cmlespond toa high level of significance,

The { test is satisfying partly bea,ause it corresponds elosely to the
commonsense procedure of assessing the difference between the means
in relation to the variation mt‘hm each series. Let us now apply it to
Table VI. The sums of squares of deviations from the respective means
(ZHX — X1, ete) —1gnQre the decimal points in Table VI—are

\\ ‘3-311(“» {a) 133,152
O\ Beries (b) 538
Series {r) 275

1 =

(16)

NG

Far mmpar‘ing series (o} and (b)),

< N 133,690
0' —1
W\ | v 10

.‘\.
D) 133,600 /1 1N
S.E. = — — = "08
¢ 10 (8 + 1) ‘
1= 197 _ g
W08

and there are 10 degrees of freedom. (Note that f is a dimensionless
ratio, so that we need make no correction for the change in units re-
suiting frova ignoring the decimal points.)  According to the tables, the
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value of ¢ that 1= exceedod by chance with a probability of 0.01 is 3.17;
the above value is much greater than this, and so it is highly significant.
Tt iz diffieult to ealeulate the probability accurately from the published
tables, but it is certainly less than 0.0003, so that the difference between
scries {4} and (b) is mueh more highly significant on this test than it
could possibly be on the other two.

For comparing series (b) and (c},

i ~
513 .
TE AT ¢(\))
i 2%
- /§13(1_+1) a A\
S VEEI WL Y D

t = —2]—- =291
7.23 7\

and there ure 7 degreeg of freedom. Frqn’ljhw tables it iz caleulated

that the eorresponding probability is_dpproximately 0.022, which is

near the value given by the previefdstest made by considering the

differences in means given by varfous arrangements of the twn series

of resuits. N\

The probability caleulatedin applying the £ test is usually the sum
of the two “tails” givigg’“fhc prohabilities for positive and negative
deviations because, as'\g’m’f,ed above, there is usually no @ prior: reason
for supposing one man to be greater than ancther. When there is such
a reason—for exdimple, it might be theoretically ineonceivabie that the
true mean fo;kéeries (b in Table VI eould be less than that for serjes
{a)—the probability is thet given by one tail.

In applighing the ¢ test, we use a pooled estimate of ¢ obtained from
the tymiseries under test. It would be equally reasonable to regard all
ﬂl? results of Table VI as subject to the same cxperimental errors and

Molize as a puoled estimate of the standard deviation

(133,152 + 538 -+ 275 /13&965
7= 8+4+5-3 v

the degrees of freedom in the denominator being 3 less than the number
of observations because the deviations are measured from 3 sample
means (consult the text-books to discover wliy). Then, for gomparing
(b} and (),
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SE /133,9(35 ‘1 N ]i 5
TN (4 5/
a1

= ——=40232
65.6

and there are 14 degrees of freedom. From the tables we find that P
15 between 0.7 and 0.8, and we have lost in sipnificance hecause the
large contribution to the sum of squares of serics (a) has incfetsed
S E.q Even so, provided that the pooling of all results to esi’im\ate w18
justified, the last procedure gives the better test, sinee if; .gfs\e's' all the
available information, and it is more likely in the long gunta show up
a real effect, whatever it does in one particular case, {B%t the proviso
is important and is searcely sutisfied here. Mere Anspection of Table
VI shows that the results of scries (a) are mddhthere variable than
those of series (b} and (¢) - and the errors of tho\ekperiments made with
nitrie oxide scem to have been specially lafde It is not justifiahle, on
the face of it, to pool these with the errafs of the ofher series. There
are statistical tests for deciding whetlel ’pooling 12 justified, but they
will not be discussed here. If thelpecling of the errors of serics (a)
with those of (b) and (c) is unjulstified, so is the pooling with those of
series (b) for the ordinary ¢ tedf ®f the difference between the two scries
(@) and {6). This will bereforred to later.

Note that it would Be'quite wrong to test the significance of the
difference betweensericd (b) and (¢) first with and then without the
pooling of the errors of all three series, and then to choose the result
which gives the Jaster probability. The decision to pool ot not to pool
must be taken Without reference to its cffect on the test of gignificance
in the partigiflar instance; it should preferably be taken before the I
test isapplied.

Tekts of significanee, of which the # test is typiced, buik unduly large
inflie theory of statistics as applied to experimentntion. They merely

m\fin orm the experimenter whether or not his results tell him anything
‘about the subjest under investigation, and this dees ot carry lim
far. In the carly days of applicd statistics, experimenters wore likely
to think that their results signified more than they did, and dufferent
cxperimenters obtained results that were discordant heeause of insui-
ficiently appreciated errors. In those eircumstances the statistician did
a service in calling attention to the errors and providing tests of sie-
nificance.  The experimenter who is past this clementaey stage in
methodalogical evolution wants to know something more. VH(: wulits



THE PRECISION OF ESTIMATES 85

to know what bis results telt him. In particular, if the difference be-
tween two means s statistieally significant, he wants to know the
magnitude of the differcnee and the precision with which that magni-
tude is estimated. If it is not statistically significant Le wants to know
how large the difference could be and yet elude significance. And in
general be wants to know how to design an experiment so as to atfain
a given precision and make a given differenee (chosen as the smallest
that is technieally importunt) statistically significant. The discussion
of these points is begun in the next scetion.

The Precision of Estimates-~Confidence or Fiducial Limits ),

In this seetion a new illustration is considered: the meazur¢ient of
the “standard fibre weight” of cotton The method of sgm,i}'}ﬁing and
tesiing has been carefully standardised so that the eryoes of the de-
termination have been stabilised, and it has been fonu}gl“fmm replicate
tests miade on a large number of cottons that the stendard deviation
of a single determination is 8.5 units; the experdence on which this
estitnate is based is so large thal we may egard this as the “true”
value, o Now let us suppose that as a 1'0;11.iiie three determinations are
ynade for each cotton, and that pairs af eéttons are compared by the
corresponding means. Then from gq&f&tion {11) the standard error of
the difference ¢ is 8.5V % + %S 6.04 units.

Now suppose that we have wd particular cottons for which the true
differenee is d’, and that w€'wiake many sets of three determinations
from euch, cuch pair of getd praducing a value of the difference d be-
tween sample means, \llen the values of d will be distributed Nor-
mally about a granghiean value equal to d with & standard deviation
for standard ertdeY of 6.04 units, and we see from Table III that 95
per cent of.t@.\‘:‘alucs of d will lie between d = d' — 1.96 X 6.9 and
d = d’ 386 X 6.94 (ie., within the limits d = d' = 13.8 units).

If, fgrexample, d’ for the two cottons is 14 units, the values of d will
be spend along the dotted line drawn through &' = 14 in Fig. 16, the
..ETn‘tfc being at d = 14 and 95 per cent of tlie values being bebween
d% 04 gnd o = 27.6 units. Another pair of cottons might have a

_ “true” difference of @’ = —10, say, and the values of d would be gpread
along the eorresponding dotted line in Fig. 16, with & centre or grand
mean value at d = —10, and 95 per cent of the values between

—10 + 136. Generally, for any pair of cottons {ie., for any given

t The measure is deseribed in the Shivley Tustitufe Memotrs, Vol. 17, 1939,
. 25, or Journal of the Textile Institute, Vol. 30, 1839, p. T173.
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d’), the cenire of the distribution will lie on the line 4 = o/, and 95 per
cent of the values will lie between the limite at which the vertical line
drawn through the value of d" cuts the two lines AB and €D in Fig. 16.
It follows that if we test manv pairs of cottons with different values of
d’, 95 per vent of the values of 4 will lic in the belt coutained hetween
the lines AB and CD. And this is true whatever the relative fre-

e Fia. 16.
P\
quencies ofAIC values of @ and whatever the number of values of d for
carh 1}%1\& cottons,
'}‘{}c\'urcgﬁing argument states something about 4 1F the true dif-
'f,!‘\ile:l((:(: @ is known. But in practice we do not know d'; we have one
”'\;\aa'lue of 4 and want to say something abowt @ I[ 95 per cent of the
values of {d, d') lie Detwoen the lines A% nnd '}, then lor any given
valie of d 95 per ceat of the puints spread along the corresponding
horizontal line in Fig. 16 will lie between the limitz at wlhich this line
etz AL and (D, and it ig casy to sce from the geomotry of Fig. 16
that these limits are at d 4+ 138, In other words, for a given value of
4 95 per eent of the values of @ will lie within the Himits 4 & 13.6; and,

it for cach determination of d for & pair of cottons we infer that the
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true value &’ lies between these limits, we shall be right in 95 per cent
of the eases and wrong in 5 per cent.

The figure 95 per cont is a measure of our confidence that the true
value & lies within the stated limits as determined from the sample
value of 4. This has been termed by Dr. Neyman the confidence co-
efficient -and by Professor Fisher the fiducial probability. The cor-
responding limits are termed the 95 per cent {or 0.95) confidence or
fiducial lémits, and the belt in Fig. 16 between AB and CD 1s the 95
per eent confidence bett. 1r. Neyman's and Professor Fisher’s theoriess
hsve a different mathematical and logical basis and deal differentlw
with more complex situations, It is only in simple situations such:‘ss
that introduced here that they can be regarded as practibally.‘\é(}ui\;a»
lent. Tie confidence cocficient and fiduelal probability,dx:e'supczu
fictally very like ordinary statistieal probability, but thqyjdre fiot guite
the same and all three quantities have to be handled, differently in
theory. However, any experimenter who is preparécl’ to aceept and
think of them in the same way will not go verg.,@xastray in practical
lifo. . R4

Figure 16 was derived by combining experignces with many eottons,
but, if for every expericnce in all ﬁcl‘cis‘ we correctly caleulate the 95
per cent confidence limits and infgrztla"at the true value lies within
these limits, we shall tend in the, {fmi;;" run to be right 95 and wrong 5
times in 100 such inferences. Liimits corresponding to other confidenee
eoefficients can he caleulated(te ., the 89 per cent confidence limits for
a Normal sampling digteibgtion are at d & 2.388.E/). Generally we
arrive at the obviOLl;-s;cBm:lusion that the more widely the limits are
spaced the more copfilence have we that the true value lies within
{hem, P\ '

Now, for ex\a'g}ﬁle, suppose that we have tested a pair of cottons and
find that %: 6; then we have a 95 per cent confidence that 4 lies
smnewlgqfe etween 6 = 13.6 (Le., between —7.6 and 19.6), but we are
not I?rQImfred to say where. The value d’ = 0 lies within the limits, and
S{t?vg“axrri\re in dnother way at the conclusion that such a difference is
no¥statistically signifieant. On the other hand the differcnee might be
as large ns 196 units. '

We can make the confidence belt narrower, and hence increase our
powers of disertminating between cottons, by increasing the size of the
sample.  The size of cample neeessary for any speeified width of band
ean easily be caleutated. We may be technically interested in differ-
ences between cottons in standard fibre weight of 8 units or greater,

G
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and thiz may be the half-width of the 95 per cent confidence belt.
Then, if 7, = 7 = » iz the number of tests per cotton,

196 X S E = 8
2
SE =85 |-
T
and
n = 8.66

There would be @ tests per cotton. \
O\

In all the foregoing a knewledge of the true standardsHeviation o’
has been assumed; it is beeause of this that a Normal! \higtribution for
the means may be reasonably assumed, and only f«o}‘ that distribution
do the factors 1.96 and 2.58 correspond to the 943\{1)‘1(1 99 per cent con-
fidence limifs. Results based on these assumpliens are quite useful in
industrial practice, for quite often one haq f(om long experience a good
idea of the value of #. ¢t

Sometimes, however, such knowledj€ %lackmc, and all that iz avail-
able is an estimate ¢ based on a_few? degrees of {recdom. Then the
sampling distribution of d/8.E. qb, mt Normal; it is the distribution of
the ¢ used in the £ test of ngmﬁcance, and the {actor for the chosen
confidence limits must be t4ken from the appropriate tables.

Thus for 7 degrees of freedom the factor for the 99 per cent confi-
dence limits s 3.50 (nn‘t\2 38 as it would be if ¢ and S.E. were known}.
If we apply this t%\om- test of the differencc in means hetween series
(b) and (¢} in Tab e VI, we find that the confidence liwits are at

000(}01(21 = 350 X 7.23) = —0.00004 and +0.00646

Thus, ﬁ\';} space limits to give a fairly high degree of eonfidence, we
infe \ﬂmt the difference between series {&) and f{¢) could he zero,
a.lthoutrh the mean for {¢) could exceed that for (b) by as much as
000046 of the units of weight. For 10 degrees of freedom the cor-
‘responding ¢ factor is 317, and the same caleulation applied to the
Cf)l’npa.l‘lhfm between (a} and (b} leads to the limits

0.00001 {1057 = 3.17 X 70.8) = 0.00833 and 0.01281

These limits specify the precisien with which the difference in mean
weights is estimated, or they wonld were it not that the exeessive
variability of scries {a) casts doubt on the procedure of making a
pooled estimate of the standard deviation,
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When ¢ is not known and only an estimate o is available, the de-
cision as to the number of observations necessary for a given preeision
or width of confidence belt is not easy. However, it is not important
to determine the number at all accurately, 1If o is estimated from 2
limited number of degrees of freedom, an upper confidence limit for
o can be determined (refer to the texf-books for this), and, if this
limit is used in the way illustrated here, the calculated number of
observations will give a suffieient gnide for practical purposcs.

In Fig. 16 the confidence belt is symmetrically placed about the line,
& = d. When errors can be positive or negative and the sampling dis?
tribution is symmetrical, no other disposition seems reasonable. .then
there is ssymmetry in the basic conditions, the problem of plécing ‘the
confidence belt is more difficult, ~\

7
|

Errors of a Single Mean \‘

So far the statistical theory of errors has been)destribed with refer-
ence to the difference between the means of pwo.series of resulis; but
the same methods apply to the mean of u singléseries. The results in a
series are regarded as a random samplé\fem a hypothetical infinite
population of results, the sample mcax;l;i" “being an estimate of the true
or population mean, X'. The sampling distribution of X is Normal
with 2 grand mean at X’ and 2 51;&1.’{1&%11'01 error ag given by equation (2).
We may test whether X diffch significantly from some hypothetical
true value, or calculate confidence limits for X', given X. If the stand-
ard deviation o is est.imatéfl*from a limited number of degrees of freedom,
n — 1 must be used inﬁ}tce of » in equation (1) and the distribution of {
must be used instea-ci of the Normal distribution.

Let us take for’je)éample the series (@) of Table VI. The mean welght
is 2.20047 andits standard error

~t

§ - 133,152
0.00001 = 0.00049
N Y 7X8

AN
\b:fi.‘séd on 7 degrees of freedom. Suppose that, from the known molecu-
lar weight of nitrogen, the dimensions of the bulb, and the temperature
and other conditions, it were possible to caleulate the theorctical welght,
say 2.30000 for the sake of argument. Then we can use the f test to
determine whether the experimental result differs significantly from
the theoretical. The difference between the two is 0.00053, ¢ is
0.00053 - 0.00046 = 1.08; and for 7 degrees the probability of chance
causing ¢ to exceed this is between 0.3 and 0.4, This is fairly high, and
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the difference could be due to the chance effect of experimental errors.

In fact we have no data on which to make a theuvretical ealeulation;
let uz caleulate within what limits the tiue value might lie with g
99 per cent confidence coeflicient. These are above and below the
experimental mean by 3.50 times the standard error based on 7 degrecs
of freedom, and are therefore at

2.29947 & 3.50 X 0.00048 = 2.20775 and 2.30119

The inference that the true weight probably lics between theso fithits
depends on a number of assumptions that are discussed inf'the next
chapter, and that are of dubious validity when applied tosttuations of
this kind, L >

N
A special ease oceurs when there are two scries gf‘results, the mem-
bers of which can be associated in pairs =0 thatledeh pair provides an

independent measure of difference, Table V{L gives an exanple. The
9, N

TABLE NN

PERCENTAGE OF Fat ix DiFFERENT Savprgs’oF Mear EsTiMATED BY STaNDARD
AQAC anov Mobpirign, Bascoce MiTuops

PR

ADAC Babeock | <Differ- AQAC Babeock | Differ-
Method | Method /N, ence Method | Method ence
AN
"”t a .
2.9 Bo's 0.3 | 26.0 26,3 0.3
22,1 |(N\21.8 —0.3 26.2 24.9 -1.3
22.4 {1, 22.4 0.3 27.0 26.9 —0.1
2257 225 0.3 27.3 28.4 1.1
2\0@ 24.9 0.3} 27.7 27.1 ~0.6
\:ga.a 25.6 0.3 41.5 41,4 —0.1
{\)V25,3 25.8 0.5 41.46 41.4 —0.2
w256 26.2 0.6 45.5 45.5 0.0
NS 25.6 26.1 0.5 48 % 48.9 ~0.3
" 25.9 26.7 0.8 49.1 47.5 ~1.6
[

N
%
\ )

' Taken (rom Dr. W, J. Youden, Analytical Chemistry, Vol X1X, 1947, p. 948,

object was to compare two analytical methods for determining the fat
in meat, and 20 pairs of determinations were made on 2{) speeimens of
meat. The investigation could have been made by choosing 20 speei-
mens at randomn for the AQAC method, and 20 dificrent speeimens for
the Babcock method, using the ¢ test as deseribed in previous sections
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for the significance of the difference hetween the two means. Had this
been done, the standard error would have been as estimated from the
setz of values in colurans 1, 2, 4, and 5 of Table VII, and we would have

Sumn of squares of deviations from mean:

AQAC seriss _ 1644 61
Babcock series 1541 .85
Total 3186.46
Standard deviation ¢ 9.16 O\

Standard error of difference 9.16V &5 + 75 = 2 .89 ghits”

Tn this instance such 2 proeedure wonld be most wastg:ﬁlil’ﬁt)f effort.
The meats vary in fat content very widcly, and the standard error of
the difference between the means would be partly, du”é;}o the unequal
representation of the diffcrent meats in the two sambples produced by
the random selcetion. This contribution to erréhyean be eliminated by
ensuring that the same meais are in the two‘ﬁ@sﬁbles and using the two
methods of testing in parallel, as was in {igt’done for Table VII.

Each pair of results gives a differengg,and the differences are very
much less varishle than the separate\ahalytical results, since they are
unsffected by the differences bet;wééri the meats. These differences are
due to: (1) crrors in the indi«vidljal results arising from experimental
crrors and the fact that théltwo tests can not be done on exactly the
same morsel of meat: (2Ma possible consistent difference due to the
two methods; and (3 }ossible real differences between the results of
the two tests thatrsary from meat to meat (e.g., the difference may
tend to be larae When the fat content is high and low when the fat
content is low){ For the time we shall ignore the possibility of (3) and
test whetharsehe difference (2) exists.

In order'to do this we treat the differences as a single series and
adoptithe Lypothesis that they are a random sample from 2 population
v’h‘a;se'truc mean is zero. The mean difference is 0,045, the sum of
%\ares of deviations from this mean is 8.0595, the estimate of stand-
ard devistion based on 19 degrees of freedom {one less than the
number of differences beeause the deviations are measured froni one

mean difference} is v/8.0605/10, the estimate of the standard error

is \/8.0595/(19 X 20} = 0.146, and ¢ is 0.045/0.146 = .31, Such a
low value of ¢ is exceeded by chanee with a fairly high prebability,
and if our assumptions are correct there 1s no reason from thesc data
for supposing that the two methods give different results.
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It will be noted that the result of comparing the two analytical
methods on the same meats is to reduce the standard crror of the
mean difference from 2.89 to 0,148 without increasing the ninnber of
tests, and so to give a greatly improved power of diserimination. Tt is
true that the degrees of [recdom are reduced from 38 to 19, but this is
a mere bagatelle compared with thie reduetion in standard crror. This
tlustrates the gain in preeision and econony that may result if an
experiment can be arranged to give compatisons between simi]a; indi-
viduals or specinens in pairs, so that differences hetween the Raars do
not affect the compavisons. Tlhe gam depends on the exteéngsof the
elminated variation between pairs. We shall discuss tja‘%\\r"tii't.llcr in

Chapter 13. O
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Chapter 9. PRACTICAL APPLICATION OF THE
STATISTICAL THEORY OF ERRORS

The preceding chapter describes statistical theory without mueh
consideration of the practical background. Assumptions are statetl\
and statistical significances are tested with little consideration of, the
practical implieations of the assumptions and the technical i,n’sérp\‘e-
tation of the results of the tests. This chapter is intended to’ repair
the omission, ' ) N

First let us note that the errors of which the ¢ test takes account are

. technically very complicated. In data such as the hitkdgen determina-
tions of Table VI tliey arc purely cxperimentalefrors as ordinarily
understood {errors due to small departures ffppy perfect temperature
and pressure control or correction}, crmrs}(f)érsonal, temporal, and
random) in reading instruments, and sq o, To such may be added
In some experiments real variations 4, the material under investiga-
tion, as in the example of fat analysis of Table VII. Here if the meats
were chosen at random for the‘j:';'\;;)'methods of analysis and the ordi-
nary two-mean ¢t test for signiﬁdance performed, the large real varia-
“tion between meats woulds ?ontribute to the ervors. But experimental
crrors alone areount f(the variations in the differences of the third
#nd sixth columns of, Table VII. The statistieal analysis makes no
distinction for thddypes of error and variation; it treats them all alike.
Any differen@ig(ti(m is & matter of technical interpretation.

&
Cheice ?QSi\g'niﬁcance Level

In tobling the significance of a diffcrence we calculate a probability
Ql&t'“"ﬁe difference cotild be duc to chance, but we can not act in a
Qrobable way ; action must be definite. Accordingly, if the probability
18 below a certain level, we come to the verdiet “siatistically signifi-
eant” and act as though the difference was real. In doing this we may
err in one of two ways: (1) the verdiet may be “gignificant” although
the frue differencc is zere, or (2) the verdiet may be “not significant”
although there may be a real difference.

The risk of the first kind of error can be made as low as we please by
“h@ﬂﬁing & sufficiently low probability P as the level of significance;

a3
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for then of the verdicts made when the true difference is zero a fraction
1 — P will be correct and only P will be wrong. A reduction in P is
achieved by increasing the value of ¢ necessary for significance. _

Unfortunately, the lower the value of P, the greater iz the risk of the
second kind of error: the error of overlooking a real difference, The
only way of reducing this risk for a given significance level is to reduce
the standard error of the difference, by either redueing ¢ or increasing
#1 and ny; how to caleulate the values of n, and ns necessary toshow
up given differences ag significant has already heen shown (p. 8§).

For given samples, however, what should be the signiﬁca@& level?
The short answer is: it all depends on the circumnstances. 7

Often a good deal is known about the field of im;&sﬁgaticm; the
hypothesis 15 well founded and would only bhe discarded oh very strong
evidence. Then a very low probability level is appfopriate. Sometimes
the experiment is made to investigate the existonnd of some new effect,
as when Rayleigh measured the density of nitrogen from tie air and
from chemical sources. Then we usually‘dlopt a “hard-boiled” atti-
tude, acknowledging the existence ofMBe new cffect only when it is
well established. {Oecam’s prineiple Zt}a’ét entitics should not be multi-
plied unduly is at the very roots pfwedr scientifie thinkimg,) Again we
asc a low probability level forsignificance. In an experiment like
Rayleigh’s, where mueh hangsfoﬁ the correetness of the conclusions, we
might adopt a level of P 20.001. In niany practical investigations we
are willing to be somelliat more venturesonie, and any result that
gives a value of P %ilim; 0.01 is usually regarded as highly sienificant,
and a result with P = 0.05 as just signifieant. There is a certain
amount of arbitratiness in the choice of these levels, hut they are also
Justified for geqitral use by long experience.

In ind 'sg}iﬁl life, however, we often meet circumstances in which less
St-ringeni’,y' iz desirable. Mr. A, W. Swan * mentions the choice be-
tweah two suppliers, A and B, of grinding wheels, on the basis of life
godcost tests done on a few wheels and a ¢ test of the significance of

“\the difference in the mean of a “cost index” which incorporates life and
Neost. 1f there are no other reasons for preferring A to B, the one with
the lower mean cost index on test would be chiosen, Lhowever small the
difference; the probability level for significance would be 0.5, On the
other hand, 4 may be the present supplier, and a change to B would
invulve some trouble that would be justified only if there were a fairly
strong expeetation that B's wheels were prof erable; the assurance would
not need to be high, and a value of P as low as 0.2 or 0.1 might sufhice

* Fournal of the Tron and Steel Institute, Sept. 1948,
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for significance. If the change from A to B involved some cxpensive
change in equipment, assuranece of superiority would need to be stronger
and a probability level of 0.05 or lower might be required.

1 wuas onee confronted with some elinical data collected at a hospital
with great trouble over many years, which seemed to show an interest-
ing and hnportant medical effeet. The level of significance was only
about 0.2, and the effect would usually be dizmissed as not significant;
my opinion was asked. 1 had been used to regard effects with a P
greater than 0.05 as not significant, but I hesitated. It seemed wréng
to iznore the evidence entirely and dismise the discovery ruthlessly®as
a mare’s nest. The effect was far from being established, blgt\itTe.\l'ndi-
cations were strong enough to be followed up by further investigations
and obgervations. _ N '

The issues that arise in choosing levels of signiﬁ{ailt:e and control
limits for eontrol eharts are similar; and it s impdithnt that we should
nob in all eircumstances adhere rigidly to convenfidnal values, Never-
theless it is inevitable that investigators willtend to adept one or two
probability levels, and in the absence of other considerations the con-
ventional low levels of P = 0.05 and (0L%vill be found most suitable.
An experiment is nsuaily so const-:ryc%“e(f that, if the chance hypothesis
survives, the results are in accordahee with existing knowledge and
ideas. The adoption of a low probability level puts a premium on the
maintenance of the status gyo In knowledge and retards the admission
of new knowledge; but tifis\is usually good. The hypothesis that sur-
vives 4 test through tlﬁe~‘§-’erdict “not significant” survives only to be
tested another day‘;}}ypotheses are not thus established irrevocably.
On the other handy"when we discurd a hypothesis we tend to do so
finally; and tigashould be done only with great eare. Progress towards
new knowlcdi@én hv experiments subject to ervor is like progress in a car
t.owards\aidéstination, through a fog. The faster the car goes, the more
Iikel}".ﬁé\ft to take the wrong turning or to come to grief through bump-
mginto an chstacle; the slower it goes, the safer is the journey but the

”ﬁz}'ng’er it takes. A loW probability level of significance corresponds to
\a slow speed of the car.

Choice of Hypothesis

In testing the significance of the difference in the series of determina-
tions of the weights of nitrogen {Table VI) we postulated the hy-
pothesis that the true difference is zero. This choice was made in
aceordance with the usual scientific method of regarding the data as
telling nothing about the matter under investigation until the contrary
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is proved—the attitude of the “devil’s advoeate.” The choice is made
on general scientifie or technieal, not statistical, grounds.

These considerations do not always lead us to postulate a zero dif-
ference. Tor example, from the {now)} knoewn composition of the
atmosphere and the molecular weights of the constituents, we ean cal-
culate theoretically the density of “atmospheric” nitrogen compared
with “chemical” nitrogen and so ean caleulate a theoretical value, &
say, for the difference in means between series (&) and {b) of Table
V1. Then, in order to test the compatibility of Rayleigh’s resulte&ith
this theory, we wouldl test whether the observed difference d isagignifi-
cantly different from . ) \' \J)

Assumptions and Hypothesis N

After the statistical test of the appropriate h_\'pnt}mifs lias been made
and the significance or non-significance estab]ishea;}t the appropriate
level comes the question of interpretation. In fud'we establizh 2 model
consisting of assumptions plus hypothesis,'&n&’the test is made of the
whole model, The assumptions may he-twing, or the hypothesis, or
both; and this must be borne in mind 3\‘l;0r; intorpreting results.

The separation of the elements of\tlic made] into assumptions and
hypothesis is arbitrary from a staﬁ;:’sti"ml point of view; it is a practieal
convenience. Broadly, the m?}inmtions are the things we take for
granted (including the aceuritey of the arithmetic!l); the Lypothesis
we are willing to hold te(doubt s the thing under investigation, As
far as possible, the tesfs hre wade insensitive to errors i the azsump-
tions, but the possjb\h v of such errors having important effects must
be berne in mind )

A verdict of\*statistically not significant” is not translated to mean
that the effget-under investigation dees not exist. It means that the
<:bscr\'c~%€ﬁﬁbmnee could be due to the chance cffects of experimental
errars{ that the results give no information about the eficet, It is
doulitiul if the experimentulist who was most sceptieal of the appli-

»q'aﬁility of statistical ideas to physieal experiments would lave the
\v’[’fr'(mtery to elaim any significance for his results in the face of such

a verdiet. The verdiet casts doubt, and in the scientific world it re-

«uires less justification to cast doubt than to make a positive assertion.

Nevertheless errors in the assumptions can render insignifieant differ-

cnees that would be signifieant were the errors removed. No perma-

nent harm is done if this oceurs, but there is a waste of effort, so it is
worth while to consider the assumptions from this point of view.

When the verdiet is “statistically significant,” it is very important
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to satisfy oursclves that it is not due to errors in the assuinptions be-
fore embarking upon technical interpretations. The effects of these
errors will now be discussed.

The Assumption of Normality

In applying the ¢ test we have assumed that the individual results
have s Normal distribution because that gives a Normal sampling
distribution for the mean. Buif, even if the distribution of the indi-
vidual results is not Normal, that of the means of samples of quite
moderate size (say of 4 or 5) is nearly Normal, and the ¢ tost/then
gives results that are substantially correct. Only Lxctptiona,il}\'" are
departures from Normality in the distribution likely to Iead to’ wrong
conclusions from the ¢ test of significance. : \

? { 2
N

/

The Assumption of Equal Variability )

In applying the £ test we obtain & pooled estimate’of standard error
on the assumption that the two samples estirpate the same true stand-
ard deviation, o', This is apparently not e of series () and (b) in
Table VI; there are statistical tests for’d'e‘giﬂing whether the differcnce
between two estimates of standard déwidtion is significant, for which
you should refer to the text-books.d \Until the data are further exam-
med we must bear in mind the poﬁ‘.glblllty that the significant difference
between series (@) and (b) igdue to the diffcrence in variability rather
than in means, althougl}{Su\:h examination would undoubtedly leave
the difference in meané\g‘s sigmificant.

SHgnificant dlfferences in standard deviation ean depress or enhance
the apparent '\lgﬁ{ﬁcance of a difference according as the larger or
smaller uample\hae the larger standard deviation. But the effect is
stnull if ¢ K ¢ $amples arc of cqual size—a condition that ean usually
be satisfiedin planning the experiment.

The;e ‘are ways of dealing with the data when the assumption of
cqqal variability is not. justified, but they are not acceptable to all

tisticians, and it is beyond the scope of this book to deseribe them.
(The so-called Fisher-Behrens test is one of these methods.)

The assumption of equal variability does not, of course, arise when
there is only one series of values and one mean, or when the individuals
in one series can he paired to give a single series of differences, ag In
Table VII. In Table VII the variability for methods A and B could be
quite different without invalidating the procedure deseribed in the last
seetion of Chapter 8.
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The Assumption of Randomness

There are no tests by which randomness ean be established; we can
only look for evidences of particular forms of non-randomaness and, if
they are absent, assume that the results within cacll serios are sub-
stantially random.

One form of non-randomness is & trend or pattern within each series.
The results in each series of Table VI are chvinusly given in order of
magnitode and not of the time of the determination.  But, had the
order been also one of time, with the strong trend shown in TablbWI,
the application of the ¢ test would have becn quite unjustified There
are tegts for the signifieance of such patterns, and, when th€y are dis-
covered, an examination of the technical detailz of the e,x.p'gri'ment may
diselose some hitherto unsuspected Inck of eontrol thatrean be removed,

A pattern of variation within a series may reducdithe apparent sig-
nificance of a difference between means if it issgtable and common to
both series; if it is not stable its effect may sithér enhance or reduce
the apparent difference in mesns. Yon will'be able to appreeiate the
cffects of such patterns if you re-regd j:h"é]}'lrst- section of Chapter 4,
for a significant effect is, from the statjstigal view-point, closcly parallel
to lack of control in manufacturing, O3

Another form of non-randonss oceurs when the results in each
series tend to oceur in groupgithe variation within the groups heing
relatively slight, but each'gmub being ecentred on a different level of
the quality under investigpation‘ This would oceur if {wo mule-spun
cotton yarns were be'gtg eompared for alimost any quality, there being
several mule cops Ber series and several tests on eaeh eop (see Table
V, for example) o The correct procedure jn sucly instances is by com-
hination to obfhllt one result for each ndependent group and to treat
the group Yalues as individuals, as bas already been discussed in
Chapte' A\ _

A thira type of non-randomness is heterogeneity of the variability
xx'iﬁllfriéach series, when, in the words of guality control, the variability
st of control. Thiz would- happen in the nitrogen cxperiment of

able VI, for cxample, if some determinations were made by Lord
Rayleigh himself and others by a less skilled assistant. Indeed there
are signs of such hetemgeneity in Table VI. Within the eight determi-
nations for “chemical” nitrogen [series {a) |, the results for nitric oxide
are apparently more variable than those for nitrous oxide and am-
monium nitrite.  Without, elose examination one can not be sure of
this (there are four readings for one and only two cach for the other
twal, but the figures are enocugh to illustrate the point. Just what iz
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the effect of such heterogeneity on the ¢ test of significance I do not
know.

The Assumption of the Inclusiveness of the Estimate of Error

This assumption is closely rclated to the previous one, When a dii-
ferenee is statistically significant, it is correct to infor that it can not be
attributed to the ehance effect of such crrors as cause the variations
within each series; provided that all other assumptions are satisfied
closcly enough, the differcnce might be due to the effect under invedtis N
gation or to errors that do not add to the standard error, In orden to

. { \
eliminate the second possibility and arrive at useful (as well gs>valid)
conelusions, all the errors that enter into the comparisen batween the
two series should have full play in causing variationg &ithin each
series, _ \\

This provise seems obvicus when stated, but it i{cften overlooked.
Analysts make replicate determinations in order tharrive at some ides
of the error, but they do not always replicate tigwhole procedure right
from the start. Perhaps they will take tw:cr}tr three speeimens, treat
them together in the analytical process, adh merely do the final weigh-
ings independently; the difference betweéch these weighings will not be
subjeet to all the sources of expcrimciﬁa’l €TTar.

We have scen that the diﬁqrehbia between serice (b) and (¢} in
Table VI, although not highly significant, is too large to be easily dis-
mizsed as due to chance. 3We'see from Table VI that the two serics of
tests were done at ver ﬂﬁff?:rent times: August-September, 1892, and
December, 1893, and\it Is quite conceivable that some change in the
uncontrolled experhmental conditions had accurred, and that that
change rather thin the change in reducing agent was responsibie for
the differcnqe\i&ﬁeans. Had Lord Rayleigh been aware of the modern
statistical $heory of experimentation he might have arranged his ex-

: Perimepf;fso that such a souree of error would contribute to the standard
crroprgnd so would be taken into account.

“When any factor other than that under experimental investigation
vaties between the two series in such & way that it does not contribute
to the errors, it is said to be eonfounded with the experimental factor.
Generally fuctors that vary together so that their cffects can not be
separated arc confounded.

The Appropriateness of the Statistical Model
Tt may be helpful to eonsider the assumpiions underlying the ¢ test
as summed up in & certain statistical model, and to consider other
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models that do oceur to which the methods are inapplicable. The
model is the relatively simple one of two random samples from Popa-
lations having the same standard deviation and differing (if they differ
In any way) only in the mean. Aceordingly any factor that affects the
two series differently merely adds or subtraets a constant amount to
the quality of each individual.

We may see what this means graphically by imagining that we can
pair the individuals in the two series, as in Table VII. Then 1\ the
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model is apprdpriate and we plot the results for, say, serics 1 against
those for &e{wg 2, using the same scale for botl;, we ohtain a graph
similar toythat in Fig 17(g}. The points are all seattered about a
Ine Sil 4 at 45° to the axes, the degree of seatter being the same at
allyparts. If the linc has an intercept on ¢ither axis there is a differ-
~ £nge between the means for the two series, and if it goes through the
Jorigin the difference is zero; this is tested by the ¢ test, If the seatfcr
ahout the line is small, the variation that is eommon to the members
of a pair is large compared with the variation in the differcnces be-
{wcen the members; if the seatier is so large that no trend can be dis-
cerned, there is no more statistical basis for the assoeiation in pairs
than if the pairs were combined at randony, and the ¢ test jor two inde-
pendent series is appropriate.

Another simple model is that shown in g, 17(5). The points are
seattered ahout a line that goes through the origin and may or may
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not have a slope of 45°; and the degree of scaiter increases as one
proceecs away from the origin in such a way that the variation about
the fine measured on any Hneur scale is proportivnal to the distance
from the origin. This model arises if cach individual in series 1 tends
to bear & constant ratio to the eorresponding individual in series 2, the
variations in that ratio being random and homogeneous over the whole
range. If the two series are equal, the line has a slope of 45°; if not,
the slope is other than 45°; but according to this model the line must
go through the origin. Results conforming to this model may be treated
by performing a ¢ test on the ratios {or percentages} between the
members of the pairs. Alternatively, instead of dealing with tlic 6rigi-
nal variable, X say, the ordinary test of significance may be performed
on ¥ = log X, since if X conforms to the model of Fig dT4) Y con-
forms to that of Fig. 17(a). The test on the ratios g4 only be per-
formed if the individuals in the two series can heMsidciated in pairs;
that on the transformed variable ¥ ean be perfaimed whether or not
this can be done, N

(Mher, more complicated, models are pm\zble The points can be
Qcattered about & [ine, sloped at some anplé”other than 45° and having
an intercept on cne axis; and the degrec of scatter can increase with
the distanee fram the origin, but. m]’t in preportion; or the points can
he scattered about a curved line) “If the appropriate model is known,
the data can sometimes be draftformed by sone mathematical fune-
tion other than simple logarithms, so that the transformed values con-
form to the model of Fig/ 17{a); or some special treatment may be
neeessary. This leads™s into realms of complication whither, fortu-
nately, it is nut gflen necessary to follow,

In thig discugdibn it has been necessary to assame the possibility of
associating the Individuals in the two series in pairs, H this can be
done it 1%{ é,’ﬁod plan to plot the results. The plot will show any gross
departytes from the asswmned medel or will give confidence that the
{ tl;s{:é’!m be safely applied. More often than not, the results are =0

Aewand the seatter is so great that the simple model of Fig. 17 (a) seems
to’be as good as any other, and the ¢ test may be used. In many of
the remaining cases, the model of Fig. '17(b1 i3 cbvionisly more ap-
propriate, and ratios, percentages, or logarithms may be used,

1f the two series are independent, thete is nothing to show whether
the simple model applies. If from technical or other knowledge the
model of Fig, 17{b) seems appropriate, the logaritlimic transformation
may be used. Otherwise there is mothing for it but to apply the
ordinary £ test and to realize that a signifieant value of ¢ may be due,
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not to a simple difference between the means of the two series, hut to
some more or less complicated departure fron the assumed model-
another way of saying what has already been said, that a significant
value of ¢ reay indicate that the assumptions, or the hypothesis, or
both are wrong,

The Precision of an Estimate

The foregoing constderations also arize in the use of confidence or
fiducial limits for deserihing the precision of a mean or a meagidiffer-
ence, or a difference between two means. O\

The confidence cocfficient or fidueial probability that defeFadines the
limits has to be chosen, and  kind of prineiple of indetertwinacy arises.
If the limits are widely spaced, we cun have considetable confidence
that the true value lies between them; if they e’ narrowly spaced,
that confidence is low. The eloser the apprasch 'to exactness in our
knowledge the lower is our confidence: the Righer the confidence, the
less exaet is the information. The levels QQTQS and 0.89 have usually
been found satisfactory in practice, x\

The assumptions of Normality, of'egial variability, of randomness,
and of the inelusiveness of the estimate of error have the same im-
portance in this connection as i the testing of significances. The last
assumption requires fm'ther‘di‘st:ussion.

When most of the variaflons are not experimental error but are due

.to real variations that{ecur naturally in some material, it is usually
not difficult to satisfy the assumption by the adoption of s suitable
sampling procedurd¥uch as that diseussed on pages 119 to 122. But,
when the variafions are largely experimental errors, it is difficult to be
sure that everfithing has been taken into aecount.

Supposeyfor example, that. it is desired to estimate a physical con-
stant, (The result of a particular determination may be the algebraie
sumdL'the following terms:

;Q,béé“’ed value = (1) true value + (2) method crror + (3} laboratory

-~ N . .
{ yefror + (4) observer error 4~ (3) observer's time crror + (6) random
errgr

The true value is what we want to know, and, if we can not know it
exactly, we want to know within what limits it lies. There are often
different methods of determining the same quantity that, however well
they are conducted, give slightly different results; the difference be-
tween the result by any one method and the true value is the method
error.  Furthermore, different laboratorics using the same method often
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arrive at different results, and so there is superimposed a laboratery
error; and sinee cach laboratory will employ different observers there
may also be superimposed an observer ervor. Moreover a piven ob-
server will often show a sectlar chiange in his results, so that any one
particular result is also affected by a thue ervor; and ﬁnally we include
all the residual errors in the random error.

The general idea is that the various errors are positive and negative
and cancel out in the long run (this can be made a consequence of
definition rather than an asswnption), and that, if the determinationg
are replicated a number of times and the results averaged, the confi*
dence limits show within what [imits the true value probably hcs\ “Fhe
statistical method does nob pretend to do more than say within what
limits a certain population mean lies, and the argument dnvelves the
identification of the population mean with the truegvalue. Let us
examine this argument, ignoring as a separate isshéthe difficulty of
bringing seeular errors into a random scheme [iteniNB) .

It iz not difficult for an observer at one l‘lb(ﬂib}()i'\? by one method,
to make several determinations at a time gm}xi 50 deduce within what
Hmits a population mean comprised of thd 3uth of items (1) to (5} lies.
But this is not very useful infortlaation;"it ineludes as an unknown the
observer’s error and his time error, and we certainly are not interested
i those. By allowing the obsc‘lwel' to repeat his determinations at
different times and allowing geveral observers at one laboratory to do
this, we bring items {4} tp-6) into the estiinate of error, and we ean
say within what limits };é'sllm of items (1) to {3} lies. This may he
of some limited interdst for practical purposcs, especially if the labora~
tory is an import m(t’ onc and ofien makes determinations of the kind in
question, If QL\CE gzive lots of a material are sent to a laboratory for
analysis, werwbnld not be perturbed at & eonsistent laboratory error,
provided #liat observer, time, and random errors could be taken into
(wmunf« , But we would be far from knowing the truc value, or how
near! Bub estimate was to it. The result for the weight of nitrogen
dediiced on page 90 probably includes an unknown method and labora-
tory error,  We could, of course, go further and have the determination
made at several laboratories and so estimate (1) plus (2). But I do
not see how to estimate the wmetliod error and so arrive at the true
value; it is by no means certain that the crrors inherent in all the
known methods cancel out, but perhaps the analysis of such data into
true value and method ervors becomu: an abstraction that is philo-
sophieally dubiocus,

H
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. The point of all this is that the application of statistical theory to
purely experimental errors (as opposed to real or natural variations) is
beset with doubts and difficulties, and it is far better to improve experi-
mental technique so as to reduce such crrovs to unimportant, liniits,
If this can not be done, it is better to use statistical theory cautiously
than to do nothing.
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Chapter 10. APPLICATIONS OF THE ANALYSIS OF
VARIANCE: BASIC FORMS

In the previous two chapters most of the statistical prineiples ipe
volved in analysing the data of technical experhinents and investige®
tions have been introduced; the rest is mostly added complica,titim to
“deal with the more complicated situations that so often arise(fy work-
ing life. ~\

The more complicated (and powerful) methods are‘ based on a
methed known as the analysis of variance. The varidndé is & measure
of variability and is the square of the standard’deviation. Iis use
instead of the standard deviation is entirely quarithmetical and alge-
braic convenienee, but the convenienee is Y’Qﬁ}&.great. If two or more
independent sources of variability are yopcrating on 2 product, the
vartance of the comnbined effect is the gumi of the variances due to the
separate sources. The same is not tg'ﬁje'of the standard deviation.

The following sections will illpstrate the methods of analysis and
problems that arise by presentingthe data of some actual experiments
and investigations—data thabappear in & number of standard forms.
It is not our aim to deal Eﬁhl the subjeet exhaustively or in detail, but
rather to display somc‘of the most important tocls in the statistician’s
chest and show wha they can do.

¢
Single-Facta;«Eoim

Table VITE Gives the results of a weaving experiment that was con-
dueted i\t “fn(‘tory. There were 6 lots of warp yarn labelled respec-
tiv(el.jgj;’LL, AM, ete. They were spun from two growths of cetton, 4
zmrj }? and cach cotton was spun to three twists {ie, the number of
s in the varn per ineh) : low (L), medium (M), and high (1. The
eombinations of these factors pive the 8 kinds of yarn, which are the
experinental treatments. From each yarn were prepared 9 warps (2
warp is a quantity of warp yarn that goes into one loom as a unit),
and, as u loom came available in the course of events, a warp chosen
at random from the 54 was assigned to it, until ultimately all 54 were
disposed of. More than onc warp was woven in some looms, but that
did not upset the randomness of the distribution. The number of warp

105
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TABLE VIIY

Warr BREAKAGE RATES FOR INDIVIDGAL WaRes

Yarn
. . i
AL AM AN BL BM BH
N\
26 18 36 27 42 20
30 21 21 14 26 210N,
&4 29 24 29 19 P N
25 17 18 1 e\
0 12 10 29 30 N\ 13
52 18 43 31 289 15
51 35 28 41 WLt 15
26 an 15 20 3% ! 16
67 36 26 44 29 | 2%
O
$
Totals 401 216 221 25¥ 259 169
Menns 44,56 | 24.00{ 24.50¢ )2%,22 | 28.78 | 18.7%
Grandmean| 28.15 Ry

threads that broke during(the weaving of each warp was counted and
expressed as a rate ol ;0}11&11}' breaks per unit length of warp. These
are the figures givcl‘}\m the body of Table VIIL
The weaving qpnlity of each yarn iz expressed by the corresponding
mean at the f0f of the table, but before conzidering the {echnical
implicationg b the results {whether yarn BL, for example, which is
meore cost-L_i{c. han AL, is worth the extra cost by rveason of the lower
mean b}\éakage rate) we want to know how far errors ean account for
the;}ﬁserved differcnces. We might apply the ¢ test to every pair of
redns, but this would be laberious (there are 15 pairs), and the eon-
\Mc;lusions would be doubtful, The probability calculated from the ¢ test
can only be interpreted in the way of Chapter 8 if there is only onc
difference under test, and to extend the argument to a set of 15 preba-
bilities is diffieult. Thus, even if all the variations in Table VIII were
purely random, the simple £ test would probably show the largest of
the 15 differences to be “statistically significant.”
One possibility would be to make a eontrol chart of the treatment
means, regarding their variation as significant if values fall outside,
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say, the three-sigma limits. This is not a good procedure, as the con-
trol ehart is not a very precise instrument when the observations are
s0 few,

The hest way is to conduet an analysig of varianes as shown in Table
IX. Thisz enables us to fest whether the differences between the 6
© means, as a whole, are significant compared with the varigtions within
each series,

TABLE X

ANaLysts oF Variance oF Warer Breaxaar Rates
N

AW,
Source of Ham of Degrees of Mean . \\
Variaticn Sguares Freedom Bguare “~
R
Trestments | 3487,7 5 )
Error 5745.1 43 120
Total 9232.8 53 \ %

The surm of squares in the row labelled #Tatal” is the sum of squares
of the deviations of the individual readings from the grand mean; that
is, (26 — 28.15)2 + (30 — 28.1543F -+, ete. The degrees of free-
dom, 53, i one less than the. number of observations, and 9232.8/53
iz the o2 measuring the totalariability of the 54 observations. It is not
entered in Table IX bechuse it is of no interest. The sum of squares
tabelled “Error” is $he sum of the squares of the deviations of the
individual values fyom the treatment means; that is, {26 — 44.56)% 4
(30 — 44.56)2 4N\Vap (18 — 24.00)2 4 -+, ete.  The degrees of free-
dom is 6 Iesg.{li}ﬁ the number of ohservations to allow for the faet that
the deviatiehs' are measurcd from 6 means or, alternatively, each eolumn
contribufes’ 8 degrecs of freedom and 6 % 8 = 48. The mean square
of 1200+"5745.1 /48 is a pooled cstimate of the % measuring the within-
-f%}s;trﬁent variability—the variability due to the experimental errors.
The remaining sum of squares is 9 times the sum of squares of the
deviations of the treatmnent means from the grand mean; that is,
34877 = 9 [(44.56 — 28.15)2 + (24.00 — 28.15)2 4----]. One reason
for multiplying by 9 is that the two sums of squares add up to the
total; the result is the same ag if the appropriate treatment mean were
substituted for each of the 54 readings, and the 54 values measured as
deviations from the grand mean, squared, and added, The degrees of
frecdom are 1 less than the number of treatments; and the mean squate
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of 698 = 3497.7/5 is in some way a measure of the variahility between
treatment means. Let us consider this further,

Suppose that there was no treatment effect and that the apparent
variation between the treatment means was due entirely to random
variation resulting from the within-treatment variation and the fact
that each mean is & mean of only 9 values. Then the standard devia-
tion of the treatment means would be the standard error /9 (where
o’ 1s the within-treatment standard deviation), the vartanee would be

¢’%/9, and 9 times the variance, which is the value entered asBe8 in
Table IX, would be ¢, In those cireumstances the “Tleatm\d\ts and
“Error” mean squares would be estimates of thie samewivighee o
But the direct estimate of ¢’2 is 120, and, since 698 is gmzfter than th1s,
there is an indication that the variation between izfatment means is
greater than that due to the effect of the withins {\eatment variations
alone (i.e, that the treatments as a whole hate'as effect). Of eourse,
since the two nean squares arc only estimatedion a few degrees of free-
dom, they would not be expeeted to be exgletly equal even if there were
. no treatment effeet. To establish a real ﬁqtment cffeet, the treatment
mean square must not only be g,reater than the crror, it must be sig-
nificantly greater. The significaged Is tested with the aid of the ratio
of the variances, termed F, ag a eriterion, If the two mican squarcs
are estimates of the same vq‘l“lanee F has a certain sampling distribu-
tion depending on the tye numbers of degrevs of freedom and there
are tables of values oi‘ﬁ‘ lying on various levels of significance. For
5 and 48 degrees, % 3,42 lics on the .01 level. The value of F for
Table IX is GOSA12 5.8, and it Hes well above the 0.01 Jevel; it is
highly clgmﬁcan.t and we infer that the treatment offects in Table YIII
predominaté “ell abave the effects of error.

The E. Jést s really an extension of the t test of gignificance, for F
Iy the\atm of the variation between a number of means to the error
variation and ¢ is the ratio of the difference between two menns to the
,e(ror variation. I the F test were applied to testing the effect of two
streatments, it would be found that F = 2 exactly. 8o if you have

\ mastered the coneepts behind the ¢ test, you may think of the F test in
much the same way,

For a large number of treatments, the table of analysis of variance
tells much the same tale as a control ehart, Exact equality of the mean
squares (F = 1} eorrésponds to 5 per eent of the points lying cutside
the two 0.025 control linits.

After the statistieal significanee of the difference hetween the yvarns
is cstablished, the next step is the examination of the differences for
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technical signifiecance. Because they are significant as & whole, it
doeg not follow that every differcrce iz so; nor if some differences are
small do they necessarily correspond to small real effects. Statistieal
theory provides a measure of error which gives some guidanee, but it
does not remove the uncertainty due to errors, The measure of error
in this instance iz the standard error of the difference between any
pair of means, of which the peoled estimate, based on 48 degrees of
freedom is V1200 % + %} = 5.17; and the 0.95 confidence belt has a
width of £2.01 X 517 = £104, Now lct us examine the means 6f
Table VIIL

Yarn AL is uncoubtedly the worst (i.e., its mean breakage rate d‘[ﬁcrs
from that of the next highest by sbout lb] Whether yarn SH 1= sig-
nificantly the best is not so indubitable; we may test 1t in {he\ followi ing
way. The combined mean breakage rate for yarn\AM AH, BL,
and BIf iz 26.39, \\lmh s 7.61 glmtor than that for' yarn BH. The

J.Fl,f 108 = 1.66, “iuch is betwccn the O.Uo a*nﬁ} 0.10 lexels of signifi-
cance for 4% degrees of freedom. Thus we,\can say with reasonable
confidence that yarn 47, js the worst; §ayn BH is possibly the best,
although a second experiment might ’nbt confirm this; and the differ-
ences between the other yarns are “‘mﬂl! eampared with the errors.

There ig another possible ling of ‘nterpretation. We may be infer-
ested, not to pick out .ndlvﬂdual 'wood and bad yarms, but to learn
somethmw of the effects of kotton growth and twist. It is conceivable
that the results of T b’{e NVIII are explicable by a difference at all
twists duc to the edétons A and B3, and for each cotton a deerease in
breakage rate ag theMtwist inereases from L to M and thence to H; the
mean for AJf mlg\ht casily have heen about 28 and that for BM about
24, and then\ﬂ)\e possibility would have been more apparent. To test
this possibility requires s more complicated statistical analysis than we
have £0, far made, and we shall relurn to this in the next chapter (p.
130)

Ymm will notico that we have made two kinds of approach to the
\aults of Table VIII, and there may be others. The choice between
them depends on non-statistical considerations.

Before we leave the discussion of Table VIIE, some attention must
be paid to the assuraptions, which are of the same kind as those used
in applying the { test. Strictly the assumption of homogeneity of errors
is probably not justified. Thousands of warp breaks have been ob-
served, and it has been found that, on the average, the error variance is
proportional to the mean value. The results of Table VIII are in ac-
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eordance with this, for, if we take the range as a rongh measure of error
variation, it is 45 for yarn AL, it averages 28 for vams AM, AH, BL,
and B, and it is 15 for yarn BH. This does not invalidate the test
of significance based on Table IX, because (a) the number of warps
s the same for all yarns and (&) the assumption of equal error
variances is satisfied if the Liypothesis of equal weans is true; the
significance of the departure from randomness weans a variation in
botll means and error variances (or standard deviations). Buyf the
pooled estimate of the error variance is not a good basgis for testing the
significance of the difference between yarn BH on the ongdiddd and
vamns AM, AH, BL, and BM on the other, A ¢ test of that difference
based only on the warps for the five yarns in question woitld probably
be nearer the 0.05 level of significance (this has not b.éml"investigated}.
Alternatively, when the error variance is pl'upgp{i&r'ml to the mean,
homogeneity is attained by analysing the squiwefoot of the observed
values instead of the values themselves (SQE\[J: 1300,

The random distribution of the warps afgong the looms ensures that
crrors due to differences between the¢lodms and weavers affect the
replicates for each yarn as much as tilie 'yarn differences. But there 1s
one souree of error not taken inpc}ﬁwount. The warps for each yarn
belong to a different “set”; andedhe sets have gone separately through
the preparatory proeesses, sueh as sizing, and on that account may
differ by more than the j:varpé of any one set, In this cxperiment set
differences arc confoudded with yarn differcnees.  Apart from any
speenlations one a{fbc willing to make as a result of previous ex-

pericnce with we::vx'ng experiients, the only way of determining the

seb error is bysreplicating the sets, perhaps by repeating the experi-
ment onee af{iice (a repotition is necessary, in any event, to reduee
the effectS i the within-set error). This idea prompts the refleetion
that ';b\:ml’ght be better to have fewer warps per set and ‘more scts.

Unigittnately it costs a good deal more to prepare § warps in 3 sets

ﬁ.}{tiﬁ;in 1, and i upsets the factory routine, and, as the investigators
“\were in this factory on sufferance, it would searcely have been prae-

tieable to have had fewer warps per set. It might have been better in
the first experiment, however, to have had {fewer varns, say two cottons
each at two twists, and to have had two sets per varn. That would
have given infurmation about the four treatments and about all the
eirors and would have eleared {he way for a fuller investigation with
other twist factors, But this, to some extent, is wisdom after the event,

Only some of the technical background and details of the weaving
experiment of Table VIII are given here; to present all would be to
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waste your time and, what is worse, add needlessly to your confusion.
Enough has been given to illustrate the points under discussion.

The-data of Table VIII may appropriately be said to be in the
single-factor form, and the analysis of Table IX to constitute a single-
factor analysis because there is one factor additional to the crror.

Table VIIL gives the results of an arranged experiment in which
there is interest in the individual treatment means; Table X gives the
result of a single-factor analysis made to investigate variations as theg' N
oceur rather than as they were produced experimentally. N

Mule cops of cotton yvarn were collected in blocks of 20, eachl bloek
being from a different mule (the technical terms are explaired on p.
28). Two leas were weighed from cach cop, giving for egeh block 39
“total” degrecs of freedom, 19 “between cops™ degrees B;ﬁd 20 “within
cops” degrees, together with corresponding sums. of “stuares.  There
were 6 blocks, and the 6 sets of sums of squares andh\icgrees of freedom
were added to give those entered in Table X;,i'ithé lniedn squares give

RS
TABLE X AV
ANaLYs13 OF VARIANCE OF WEIGI;[’["S.'.OF Lras oF Corron Yarxw

R

e Sy Supm of Degrecs of | Mean
Bource of Variation P Sqﬁa-res Frecdom Square
- AN
» {~. y
Betwoen cops (wighimblocks) | 19,138.83 114 167.88
Within cops () 5,681.00 120 47.34
¢
Total \ 24,819.85 . 234
oy &/

an angly;}% of the variations within the blocks, and these are inter-
estingbecause they are dye to factors not cusily eontrolluble. Tlhe

beke-to-block variations are not studied beeause they can be casily
cliinated by careful adjustment of the mules.

In Table X “between cops” corresponds to the factor and “within
cops” to the error; but it is inappropriate to speak of error when the
investigation is not a controlled, or partially controlled, experiment.

The “between cop” mean square is much greater than the other, and
there can be no doubt of the “cop effect.” But there is no point in
examining the 120 individual cop means to pick out the high and low
ones; = mule sping a thousand or more cops in a day, and it is im-
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practicable to “keep tabs” on ail those individually. VWhat is neceded
Is a statistical description of the cop variation, and this is provided
by the corrected cop variance.

The mean square of 167.88 is n times (n = 2, the number of leas per
cop) the apparent variance between COp means. But it is cnhanced by
the within-cop variance: it would equal 47.34 if there were no cop
effect. The corrected cop varlance, frec from the effect of the within-
cop variation, is (167.88 — 47.34) /2 = 60.27: this is an cstimate of
the variance between cop means if an infinity of leas could Hedested
per cop, O\

Perhaps the best way of expressing to the tcchnical mianthe im-
portance of the cop effect is to state that with it, if a lard¢ number of
leas are taken at random, 1 per cop, the variance 186027 + 47.34 =
107.61 and the corresponding standard deviatior;“@&mﬂ?. If the cop
effect is eliminated, the corresponding varianceJs reduced to 47.34 and
the standard deviation to 6.88. The statis&iezﬂ Justification for these
statements can be found in text-books. ‘Fhie Appreciation of the mys-
teries of an analysis of variance ean timeshe reduced to the apprecia-
tion of two standard deviations; the teelnician, manager, or cxeentive
who has no “feel” for the stanr_la’rd‘;dé'\-'iatifm iz in & hopeless case for
appreciating the results of a larg&aven of statistieal investigation.

These results can be usedain & slightly different way. When yvam
Is used as weft or filling, that’ frory one cop forins adjacent threads in
a width-ways strip of ol & few inchies long; and, in a eurtain ma-
terial that may be yiewed by transmitted light, the strip containing
varn from a copgyith'a high mean weight per lea appears denser than
that cotrespondifighto a low mean lea welght. The variability between
cops of mea:n'}eé, weight when all the leas on a cop are weighed is
thus relatefPds the appearance of stripiness. There ure 25 leas per cop,
and tt iéﬁifesp()nding weight variance is thus 60.27 + (47.34,/25) =
62.16{@1¥ing a standard deviation of 7.88. Thus we have been able to
dedée from fests on 2 lens per cop an index of the stripiness that

...sgiﬁ)“-'s when whole cops are woven. In an investigation, for example,
Nt would be feasible to test 2 leas from each cop of a batch in order to
ubtain the standard deviation, and te weave the remainder in order to
obtain the eorresponding cloth. It has been assimed, quite reasonably,
that, there is no important pattern of variation within the cops.

All these variances and standard deviations are only cstimates based
on limited numbers of degrees of freedom, of population or true
varlanees and standard deviations; and they are not very precise un-
less there are many degrees of freedom.



SINGLE-FACTOR FORM 113
TABLE XI
YieLp Point of' Sroen Discs (Tons rEr Square Inch)
Cust No. Ingot Means Cast Means
Heat Treatment 1
1 20.1 . 20.10 N\
2 22.6 22.4 22.50 .
3 24.6 22.55 23.57 N
5 20.8 21.0 20.75 20.85 N\ 7
7 22.4 22.404 ™
8 21.9 21 G0N
2¥4 N
AN\
Hent Treatment 11 »
R
4 21.25 2t.9 WV 21.57
6 21.15 \O)¢ 21.15
Heat Trgsg‘fiﬁi:e;t I
5 10.45 |~ 18.4 18.92
6 294N L 21,90
¢ (\\,/
N\ ,\ tlent Treatment [V
PY; :
AN 201 19.55 19.82
N
N\~
{\ Heat Treatment ¥
Ay M
eN®
Q) 8 20.1 . .10
10 20.75 20.15 20.45

Tn the last two examples, the number of cbservations per yarn or cop
is uniform; this arrangement, facilitates the analysis and interpretation.
Sometimes, however, especially when existing works reeords arc used,
the data can not be arranged in this convenient form. Table X1, which
is taken from Statistical Methods in Industry, was obtained from works
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records of routine tests of yicld point made on specimens taken from
steel dises—one test per dise. Several of the type of dise in question
were made from an ingot, and, i order to eliminate the effect of any
possible pattern of variation through the ingot, only those ingots were
ineluded for which the first four dises had been tested. The ingot
means in Table X1 are means for the first four dises per ingot. Further-
more, several ingots would be cast at the same tapping of the furnace,
and sometimes more than one from the sane cast would be used to
make discs yiclding results in Table XI; the ingots ave thereforexiden-
tified by the cast number. There were one ingot from east I,4wo from
cast 2, and so on. The dises had also been subjected to difitrent heat
treatinents, lahelled 1 to V. Heat treatment is knowndo affect yield
point, and so it is hardly worth while invcstigatjng? that effect, but
Table XT does give some information on whethep-theFe are any uncon-
trolled east-to-cast variations that affect vitl\point. For any one
heat, treatment the cast means vary: are thesghariations greater than
can be attributed to within-cast val‘iati{)&x?. This is the sort of ques-
tion a control chart might answer wers, the data more extensive and
systematic; as things are, an analyéis’ of variunee provides a good
method. Ny

Since we are not interested m\treatment variations, we may regard
each one as providing a sepapite block, measuring all the deviaticns
from the treatment meandand finally adding the sums of squares and
degrees of freedom fophe treatments. Casts numbered 1, 7, and 8
give no informatioridn the within-east variation, but they add to the
information on thé\between-cast variation. Cast numbered 3 in treat-
ment IV gives;{di“nformation on the between-cast variation, sinee that
1s the only chsh associated with that treatment, but it adds to the in-
formatiopof'the within-cast variation. Thus al] the data of Table XI
add vaziously to our knowledge.

Tlie\results of the analysis arc in Table XII. The calculation of
the™sum of squares for casts is somewhat tricky. The treatment

Ny

\n)eans to be used are means of the individual ingot vulues [e.g.,

(20.1 4 22.6 +---) /10 for treatment I], and the deviations of the
cast means from the appropriate treatnent means are squarved, multi-
plied by the number of ingots per cast, and then summed. The ingot
values are measured as deviations from the cast mcans, squared and
sunimed in the ordinary way to obtain the result 3.25. The 8 degrees
of freedom for the between-cast sum js made up of 5 from heat treat-
ment I, 1 from I, 1 from II1, 0 from IV, and 1 from V. The § within-
rast degrees of freedom are made up of 1 each from casts numbered 2,
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TABLE XIi

ANALYRIE OF VARIANCE oF YIELD Pomnt oF SteEEn Discs (HEar TrEaTMENT
CoNBTANT)

Sum of | Degrees of | Mean

Bource of Varialion .
Hquares Froedom  Square

Between enats 19.23 8 2.40
Bolween ingots within ensts 3.25 3 0.41 .
oA\

Total 232,48 16 '\

3 (in heat treatments I and IV), 4, 5 (in heat treatmc®LIIY, and 10,
and 2 from cast numbered § (in heat treatment 1), ,"Fh'c\mean squares
in Table XII give a value of F = 9.61/1.62 = 583, which ou 8§ and
8 degrees of freedom lics near the 0.01 level ofssignificance. The cast
effect is well established, and the onus is noghon the technician to dis-
cover the causes of the variation. He cah miake use of the knowledge
that the standard error of the differenge between two cast means be-
longing to the same heat trcatment.i}%“'\‘/no.él [(T/n7) 4 {1/n2)1, where
7y and ny are the numbers of iug’gﬁts per cast, and that the 0.95 con-
fidence Limits are at 2.31 times 1is above and below the observed dif-
ference (2.31 heing the valde'of ¢ on the 0.05 level of significance for 8
degrees of freedom). (¥ ith such varied numbers of ingots per cast it
is very diffieult to estj:%te the corrected east variance,

These results deperd on the usual assumptions applying, but when
the data are so'¥eanty the conelusions are not very precise, and only
depurtures frbfh the assumptions that are obvious are likely to be in-
portant, %\\*u such departures are apparent in Table X1

I}l\'.';,lf' the foregoing examples, the mean squarc associated with the
ftajn’ factor under investigation is greater than that associated with
E‘r?ﬂ' or within factors. 1What do we infer when the latter iz greater
than the former? The short answer is that, if the difference is statisti-
cally significant, it indicates a non-random pattern of variation within
the factor units.

Two-Factor Basic Form
An example of data in the two-factor basie form is in Table XITIL,
which is also taken from Statistical Methods in Industry, and which
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gives the yield point of specimens of steel taken one cach frem a num-

ber of steel dises, In Table XIIT values are given for each of the first

TABLFE XII1

YLD PoINT oF SrEuiMENS FRoM ST Discs (Toxng rrr Squars INes)

Order of Pisc from Ingot .
Tngot | Mean <O
i 2 3 4 O\
. . e _\_; . Sy
17 20.4 20.4 19.2 20.4 ™20
24 22.8 22.8 22.0 22 .3 /N 22.6
2B 21.2 21.6 22 .8 24.00"] 22.4
3D 19,2 20.4 19.8 PA: 20.1
8H | 20.8 20.4 18.4  [\20.8 20.1
31 19.6 | 20.0 19.0 /2196 19.55
37 21.4 22.2 260, as.8 24.6
3K 20.6 19.2 | 283 21.6 22.55
3L 18.8 19.0 7.6 20.4 15.05
30 19.9 20,1 ofi 19.4 21.2 20.15
4B | 19.8 20437 22.0 22.8 21.25
40 20.8 20.% 22.8 23.2 21.9
54 8.0 Mo 2 20.2 20.4 19.45
5B 18.4 {N17.5 18.6 19.0 18.4
58 24N 20.4 20.6 20.8 20.8
5F 2007 | 20.4 21.0 21.6 21.0
514 kW 14.2 20.8 21.6 20.75
64 {)20.4 20.6 22.0 21.6 21.15
885 22.8 21.4 21.8 1.6 21.9
| 2.8 23.6 22 4 20,8 22.4
J28B ] e | mo 21,4 | 23.0 | 21.9
N 19.4 21.2 20.8 21.4 20.7
& 8E 18.8 20.0 20.8 21.2 | 20.2
~N 8&F 20.2 20 8 19.2 20.2 20.1
NS e 20.0 2t.0 21.5 20.6 20.8
Q 98 18.4 188 21.0 21.2 18,85
\ 108 21.2 21.0 20.0 20.8 20.75
100 1.8 10.6 20.% 20,4 20.15
Mean | 20.38 | 20.50 | 21.00 | 21.54 | 20.88

4 discs made from 28 ingots. The column of means shows an apparent
variation from ingot to ingot, and the row of means suggests a steady
merease in yield point from the first, to the fourth order, We muy
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postulate that each vicld point is made up of: the grand mean yield
point -+ & deviation due to the ingot variation + & deviation due to the
order variation + & random or residual deviation, regarding any one
ingot deviation as being the same for all dises from that ingot, and
any particular order deviation as the same for all ingots. Numeri-
cally this postulate is expressed for dise 1 from ingot 1F as follows
ithe terms being in the same order as before):

204 = 20.88 — 0,78 — 0.50 + 0.80

For disc 2 from ingot 1F the equation is
oA
20.1 = 20.88 — 0.78 — (.38 + 0.68 N\

and for dise 1 from ingot 24 it is (5.’;‘ )

92.8 = 20.88 + 1.72 — 0.50 + 0.71{1"

According to this model the variation iz die te the effect of two
factors, ingots and orders, superimposed ou\the random variation;
hence the term two-factor form. This foris also termed basic in
order to distinguish from other forms, insbich the effects of twe factors
may be superhmposed, which will be dtlustrated in the next chapter. I
also prefer to term the random eﬁéc{-'?esidu&l because, as we shall see,
it may be due to assignable (;aﬂsé% and it is unsound at this stage to
prejudice the issue; the vag:ia‘tib'n is in fact the residual left over after
the effects of the factors hie® been accounted for.

This analysis is purelyonjeetural, and we must subject it to tests in
order to discover if\t{}c 'postula.ted cffects arc statistically significant.
After all, if the figlres in the body of Table XIIL were distributed en-
tircly at randmi/there would be certain differences between the ingot
and order mjeén:-;, and we need to know whether the observed differences
are- greatéd) ” This we determine by the analysis of varianee shown in
TabloXIV, The tutal sum of squares is that of the deviations of the
inditidual results from the grand mean, and the degrees of freedom

'~€£T§\’Une fower than the total number of results. The ingots sum of
N stuares is 4 times the smn (20.1 — 20.88)% 4 (22.8 — 20.83)% - -,

ete., und the degrees of freedom are one fewer than the number of in-
gots. The arder sum of squares is 28 times the sum (20.38 — 20.38)* +
(2050 — 20.88)% - - -, ete., and the degrees of freedom are one fewer
than the number of orders. The residual sum of squares is obtained
from the residual deviations ealculated above and 1s 0.802 4-0.68% +
v+ 3 0.70% 4 - -, ete.; alternatively it may be obtained by subtracting
from the total the ingots and order sums of squares. Tihe residual
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TABLE X1V

ANALYSIS OF Vartawnen or YieLe Poixv or Srgpr Dises

Source of | Sum of } Degrees of | Mean
Variation | Squares | Freedom | Square
Ingots 185.3874¢ 27 | &.57
Order 24.3717 3 8.12 Q)
Residual 130.7%58 &1 1.62 N
)\
Total | 240.3449 } | £\
| Oy
- T ' 4 0“

degrees of freedom are likewise obtained by subtractidn. The heginner
who carries through the caleulation will arrive ut 8'better appreciation
of the basis of the analysis; for a ful) jnstiﬁcagion he must refer to the
text-hooks. N

Each ingot has one of cach order, so-fhat Ingot differences are un-
affected by the order effect, and the ;iffgd mean square in Table XIV
measures the ingot effect plus the residiial variation; it is free from the
order effect.  Likewise the orderMean square is {ree from the ingot
effect. The virtue of the arrgngement of the data is that it enables us
to separate the cffeets of the'two factors.

If there is no ingotieffect, the ingot mean square will equal
ihe residual, withip the limits of sampling errors; the ratic F is
687/1.62 = 4.24, a%idvon the basis of 27 and 81 degrees of frecdom
1t lies above the @001 lovel of significance. The F for order is 5.0
and for 3 and SVdcgrees lies rather above the 0.01 level of significance.
Both cfl"e(‘t's{ari therefore he aceepted with some confidence,

The establishment of the statistical significance of the effects is, a8
usual',"bhe"beginning rather than the end of the full investigation, In-
div?fffa,al Ingots may be compared with a standard error of a difference
L Mesns equal to V182(Y T 7). The standard crror of the dif-

%

Ndérence between any two order means is /1,62 (Vog + Yg); but the
techndcian wilf Probably be less conecerned to compare pairs of orders
than {0 note the steady trend in vield point down the ingot.

The ingots may reasonably be regarded as a random samnple from a
Population, so that the corrected varianee of the ingot cffect has some
meaning. By 4 simple extension of the argument applied to the zingle-
fuetor form we have
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) . 6.87 — 1.62
Corrected ingot variance = T =131

The importance of the ingot effect relative to the residual may be
expressed by the following standard deviations:

Standard deviation (residual o
variations alone) = V162 =129

Standard deviation (residual -
plus ingot variations) = V1624 131 = \\

In view of the pronouneed trend of yield point with order, adyof the
limited number of dizes that can be forged from an mt‘fatr it would
he quite unrcasonable to regard the four orders as a rsmdom sample -
from an infinite, or even g large population, and the c;;rl&rf,cted varianee
for orders has not the same meaning as that just giten for ingots. How-
ever, it has a meaning which will be deser 1bcd’1Q\t,he next section.

Application to Sampling Inspection \ :

I do not know whether steel discs arc Realt with ecommercially in
the following way, but many articles. that show statistically the same
kinds of variation are, so this diseviision has some practical relevance,
even if tlere is none to steel diseg®

We moay imagine a cnstofier receiving deliveries of dises in large
lots all mixed up, so that:hq\haq no means of identifving their ingot or
order number, He is \Q\m(n-tf'd in the variability of the yield peint
values, and he knows\that both ingot and order cffects contribufe to it.
If all the dises ayétaken at random from the first four orders so that
it is left to chaee how many there arve from each, the contribution oi.
the order eﬁcﬁéis the corrected order variance of

O\ — 16
R \\ w - 023
O 28
é\rr\fodesl. contribution. Then the customer would find the following
standard deviation to compare with thoge given above:

Standard deviation {residual + ingot L _
-+ order variations) =+ 1.62 + 1.31 + 0.23
= 1.78

H cach order s equally represented in cach lot, the corrected order
varlanee for use in this connecetion is % of 0.23.

1
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These results may have apother applieation.  Bael lot of dises may
be aceepted or rejected un the basis of the mean vicld point determined
on a sample, If n dises are tested af random fromn ingots and erders
taken at random, the standard error of the mean s 17890, Ifthen
dises are all first-order dises, the order variation does not Icnntribute
to the sampling errurs for the purpeses of comparison and control, and
the standard error is L7U/vn. The veduetion is small beeause the
order effeet is small; but in some applications such an effeet{oan he
large, as the next example will iliustrate. A

The above arguments apply anly to the first 4 dises i';'c@'l\f}:'sch ingot,
Until the other orders of ises have been investigated wédan say noth-
ing about them, N

<

N

“

o'{.’
The next example concerns the bricks used iI{éh:i.pLCl‘ 7 to lustrate
sampling sehemes. Table XV, which is {r_iapted from oue given by
PN

TABLE x§ ¥
BrECIFIC GRAVITY OF SiLica Bmcks (l')]-::via'fl:cms FROM 2.30 Murriecisp vy 200)
'.}:6 Kiln Number
Zoue —"—r—— —"Tf;"_-'__"ﬁ_' v T Ty T
H | % ‘ i | | ' | a }
1 2 S @ ' os 8 it | Toral
| o : : | i
—_— 1 2 _}_ _ e | __I | - —_
|
R1 4 .z\g 5 2] g 14 | 13 |+ 4 ‘ 42
1 6 .48 | 3 ‘ 13 gy o4 2| 6! 48
w1 SAN L I TV B T {16)‘ 10 70T ‘ 74
IS 4 2 3 (3y! 2 41 21 2
Bl & 10 3 ‘ 4 4 (15;i 6 | 10, 6 | 47
R2 NN 6 p) 5 6 3 (12) ¢ & 6 | 2 3
2N 4 4 4 4 4 (s;)[ 2 6 . ¢ | 2
e 12 8 8 4 6 (10j ;| 4 4 | 4 ° 55
02 4 3 4 1 3 ‘ (6)’ 2| 3 3 ‘ 20
B2 4 4 2 4 4 (10y | 6 4 4 1 32
t3 4 5 4 7 7 () 7 4 ] | 4t
L3 5 4 8 8 ooyl 2 | 1 A4
W3 4 4 10 8 & (1{3)‘ [ | £ 5 65
3 6 7 6 sz | an! 61 6| 4 | 5
B3 0, 4 4 6 6 (1n)i 5 4 | ] | 34
Total © 83 | 93 | 80 | s3 | =g :(mg)f %4 | 76 |1| Fio 658
i i

! Excluding kiln 7.
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Afr. W. T. Hale in the paper already referced to,* gives the speeific
gravity of individual brieks in units chosen heeause they vickd small
nwnbers which are easy to handle arithmetically. The hricks were
taken from 9 kilns, and in each kiln from 15 different sections, termed
zones, into which the kiln is divided. The symbols for the zones have
a significance which will be deseribed in the next chapter. The zones
are common to the kilns so that the data are in the two-factor basic
form. Cursory examination shows that the results for kiln 7 are very
Jifferent from those for the others, and so they are omitted from the '
analysiz. The rejection of data merely because they arc differeniais
a dubious procedure, as it s difficult to know where to draw thellinie]
and there is a danger of Tejecting data that shonld be included. ™ Here,
howsver, the difference is so marked that it scems unrcdsonable to
regard kiln 7 as belonging to the same population as Qt{'hthers, and
there are plenty of degrees of freedom remaining.

TABLE XVI Y,

ANALYsIs oF VARIANCE oF SpEcIFic GRAVITY, o BHIcEs (TTarrs X 200}
X 3

A\,

Spurce of | Suom of Defiraes of | Mean
Varfation | Squares i sBroedom | Sguare

S
~

Kilos 20,77 7 2.97

Zones ) i{‘\'.33.72 i 14 25.27
Residual \\\ G79.48 9% 6.93
T(?t-if! w1 1053.97 119
A\ ¥

The nnal};sié;}f”variancc shaws that there is no kiln effeet (the kiln
mean soqu Jetie loss than the residnal, but not sigmifleantly so); the
zone effdeb Is statistically significant (F = 25.27/6.93 = 3.65 and is
substaﬁjtiélly greater than the value on the 0.01 level of significance
fdr 12 and 98 degrecs of freedom). These results sugeest that 1t s
podéible to control the firing of each kiln so as to keep the mean spee ific
eravity substantially the same from kiln to kiln, With such knowl-
edge, with knowledge of the steps taken by the producer to maintain
comtrol, and with the evidence of a control chart, the customer might
well have sufficient confidence to accept different lots of bricks without
any acceptance/rejection scheme of inspeetion. Without this eontfl-
denee he will probably use a saniple scheme.

* Transactions of the Ceramie Society, Vol. 48, 1947, p. 147,
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If the bricks are delivered in mixed lots s0 that the producer does
not know from which zone any bricks he scleets for test came, the
zone and residual variation will contribute io the wvarlance from
which the standard crror is caleulated. The zone corrected variance is
(25.27 — 6.93) /8 = 2.29, and the variance of bricks taken at random
18229 4 6.93 = 9.22. The standard crror ol the mean of n bricke is
then V922/n = 3.04/v/n. Tf the sample of n bricks ean always be
taken from the same zoneg, the zone variation does not contribute to

the random error of the mean, and the standard errar iz /63371 =

2.63/v/n. This reduction in standard crror shows tie ccormn{qussib]e
in this instance through introdueing a degree of repres¢ititiveness or
stratification (as it is called, the zones being the stmtg&}iﬂthe sampling.
Often only the producer has the knowledge of th'e j@}igih of the bricks
necessary to make such a scheme possible. The\mmprovement in pre-
cision depends on the magnitude of the vasiatien between the strata,
relative to the residual, and there is an arbin hsing technical knowledge
to arrange the strata so that as much &% the variation as possible is
between strata. When the field of saMipling is more or less continuous,
as 18 the internal volume of a brick kiln, so that the strata have to be
defined artificially, it is g matterlfor investigation to discover, In each
mstance, the hest number and@rrangement of strata. In all such in-
vestigations and in the preSentation of the final results, the analysis
of variance iy an invalyghle tool,

The foregoing congh;\;sions for the bricks are true only if cach brick
i taken at randofa®{m all those belonging to its zonc, or if the svs-
tematic (as oppaged to the random) variation within each zone is rela-
tively small. .'H.m-e} with as many as 15 zones and & not highly powerful
zone effect (the secand condition is likely to apply.

The gtandard error of the mean of 4 brieks, with the zone effect
eliminated, is 2.64/2 = 1,32 in the units of Table XV or, in the units
of specific gravity, 1.52/200 = 0.0066. This is the standard error used
Abrnthe sampling scheme of Chapter 7 (p. 60},

\ " We shall consider the zone variation from another point of view in
N\ the next chapter. ' '

Three-Factor Basic Form

The three-factor basic form of data is also termed the Latin square,
and a simple example is given in Table XVII, taken from a paper by
Main and Tippett.t A weaving experiment was done in experimental

t Shirley Institute Memaotrs, Vol. 18, 1941, p. 108, or Journal of the Textile In-
stitule, Vol 32, 1041, p. T200. '
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TABLE XV1I

LaTin SQUARE ARRANCFMEKRT ix J.0oms {13, (3), {4), anp (7,
AND Warp BrEaxact BaTes

Warp N 426 427 428 429

Period 1 5.52 (1) 2.87 (4} 9.76 (7) 6.69 (3}

Poricd 2 | 6.02 (4) 6.25 (7) 5.14 (3) a.16 (1}

Pericd 3 | 8.90 (T} 2.91 (3) 5.77 (1) 6.53 (1)

Period 4 | 6.08 (3} 5.07 (1) 2.83 (4) 9.77 (1) '\‘\
— 3 — N

workrooms to determine the weaving quality of 4 warps, nyinlered 426
to 429, each of which had been treated differently. 'Therwarps werc
woven simultancously in 4 looms, and the total w"éa;\-‘ing time was
divided into four periods. At the end of cach ]ﬁ:‘iod the warps were
interchanged between looms according to the ple of Table XVII, =0
that by the cnd of the experiment each wa‘rp:\lfzid spent one period in
each loom. This experiment differs from that described in connection
with Table VIIT, because herce there ig\only onc warp per treatment,
the unit of production is the weawing of one period, and warps are
interchanged between looms. 9 \\y

A charaeterisic and virtue, of the arrangement is that, i warp,
period, and leom variation$ bperate by adding or subtracting a con-
stant amount for eachewirp, period, and loom, the differences between
the warp means are ‘u%.ffectcd by the other two factors as are those
between period means and loom means. The warp, period, and loom
effects are separated from each other. ‘

A Latin sqn@ ¢ may have any number of rows or coluinns provided
that the nhunber of rows equals the nuniber of columns.

The, ahalysis of variance is performed by & simple extension of thz‘xt
for ghe two-factor analysis; the results for the warp breaks are 1n
Table XVIL. There are 16 results in Table XVII, and hence 15 de-
b’eés of freedom altogether, There are 4 each of watrps, periods, and
looms, and hence 3 degrees for each, leaving 6 degrees for the residual.
The residusl mean squarc estimates the errors for each of the factor
effects. The period mean square is less than the residual, but not sig-
nificantly so, and there is no appreciable period effect. The values of
F for~the warp and loow mean squares are respectively 7.06 and 9.34,
and they lie between the 0.05 and 0.01 Jevels of significance for 3 and
6 degrees of freedom. The warp and loom cffects are probably real,
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TABLE XVIli

ANALYSIS OF VARIANCE OF WARP BrEakaos Rares

Sotiree of Sum of | degrees of | Mean
Variation Squares Freedom | Square

R D S
Warps 20,4084 3 © 983 A~
Periods 11726 3 | o0
Looms 38.10%6 | a i 13.07 N
Residual | 8.3138 6 ‘ 139 ¢\)

e e LN
Total | 78 1834 15 ‘ )
S

and their mean values should be examined. T iS‘E‘cJ\bc noted that warp
and treatment differences arc confounded, andthe data do not show
whether the treatments are responsible J£0e" the differences between
the warp means. "The loor effect i ok very interesting technically;
it is a souree of variation that hagbeen eliminated {rom the warp
fomparisons, KO
Data of naturally oceurring yafrie"tti(ms carn somctimes be collected in
the three-factor basic form, gﬂd:éorrectcd variances be estimated. But
this is not often done, and the most uscful application of the form s to
experiments. -
o\

¢
Multi-factor Basié\li;)’f‘;ns

Arrangementgin whicl there are ag many rows as eolumns can be
extended toseober 4 or more factors; but for these higher forms there
HYC restrif-‘tiﬂﬁﬁ a8 to the numbers of rows and coluyms. The four-
factor fox is known as the (raeco-Latin square; sinee these forms
introduee complications without any new statistienl prineiples, and

sipcia they are not widely used, they will not be dealt with here.
N
_\General Discussion

It should alwavs be horne in mind that the interpretations given in
this chapter of the results of the analyses of varianee depend on the
same general assumplions as those diseussed in connection with the
¢ test, and that the general statistieal model is of a homogencous
random variation witl the effects of the faetors as shuple arithmetieal
additions. The hypothesis tested by comparing the variances is that
cach factor cffeet is zero, but a significant execss of a factor variance
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over the residual may indicate either that the hypothesis is untenable
“or that the model is inappropriate. All this has been sald in connection
with the £ test, but it will bear reiteration; it should never be forgotten.

Tle most important assumption iz probably the homogeneity of the
residual variations. The examination of this is easy when the data are
in the single-factor form, but it becomes progressively more difficult as
the form becomes more complex; these forms are usually analysed
without much consideration being given to the validity of the assurop- £
tions. This is & weakness in our practice, but, if the possibility of error
is horne in mind and obvious gross departures {rom the assumptions\are
not ignored, we are not likely to go seriously wrong. ;:\ ’

The hind of data for which the assumption is likely tg‘li‘rg Wrong
amises wihere there is a natural floor or ceiling to the podsiblé values
and the variations extend away from very near thab{l}sar or ceiling.
For example, the floor is zero if negative values d{\he variable are
impossible, and the cciling is often 1.0 when thé\wariable is a ratio.
In these cireumstances, the residual variation.about a factor mean that
i near the floor or eeiling is likely to be 18svthan that ahout a factor
mean well removed from . There arq‘m'athematieal transformations
of the variable that ean often be useq mithese eircumstances,

The factor effcets that the anai}}'séé diselose may be the effects of
experimentally imposed varistions) ‘as for the yarn effect in Table 1X,
in which eage the individual(ffans are cxamined after significance is
cstablished; or they may bieiﬁaturally oceurring variations, as for mule
cop effcet in Table X and'the cast effect In Table XI1I, in which case
cither the indix-'irlual’li}'cans may be exanmined or an estimate of “cor-
rected variance” beade. If “corrected variances” are estimated they
nay be used tof\:mdicate the importance of the faetars or to estimate
standard es@i‘}‘ﬁssociated with varions sampling schemes.

In thednterpretution the residual variance has so far been regarded
as dug i varistions that, in the langunage of yuality control, may be
lcfb‘io\'chancc—to errors and other random variations. For the maore
eB‘mfﬁlex forms the possibility of another interpretation emerges. Con-
sider the stecl discs of Tables XJIT and XIV, Since only one test of
vield point was made for cach dise, at least part of the residual varia-
tion is due to testing errors and to the difference between the single
specimen of stecl tested and the whole wheel—a conglomeration of
effcots we may call error. But in addition the order effect mipght be
really differcnt for the different ingots; we can imagine a very latge
number of tests done on each disc so that the error in the mean is
negligibly small, and yet it is possible for an analysis of varianee on
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the data to give a residual variance When this occurs, the average
got effect measured by the variation in ingot means for all orders ig
termed a main effect, the main ingot effect: the average order effect
for all ingots is the main order cffeet; and the residual effoct, neasured
by the deviations of the mdividual true values from the combined ingot
and order means, is the interaction between ingots and orders. In a
two-factor basie analysis the interaction is confounded with error.
When there are 1nore than two main Iactors, the system of inter-
actions becomes much more complicated, but, since in the batiblorms
it cannot be analysed, this is not the best place to discuss these com-
pheations. It is sufficient to remember that in the amlysis of the
more complex basic forms the residuyal variance is due, t0”ervor plus a
complex of interactions. SO
A fairly common difficulty arizes in ca‘:nneetifll'\wfth the analvsis of
Table XVI. The variance for kilns is not sighifpeantly different from
the residual; may we add the two sums of Stuares {700.25}, the two
“degrees of freedom (103}, and obtain Ayifnproved estimate of the
residual variance (6.687 based on nm‘rcx\d’égrees of freedom? In this
mstance the temptation to do this is fed very great since the inerease in
degrees of freedom is not great; batt sometimes this pooling would give
a matcrial inerease in degrees \I8 pooling justified? The position s
complicated and obseyre, At?ﬂrst slght it would scam permissible to
adopt some level of significdnce for the F test and to pool with the
residual mean square vélues that do not differ from it according to th%s
criterion.  Then, whatgver level of significance is chosen, some esti-
mates will be wrongly pooled, others that should be pooled will not be,
and except in €l rare circumstances of the two eficets balaneing
exactly, the‘ﬁi}a} pooled cstimates will be biassed. The uncertainty of
the bias iya-argument against pooling.  Again: if the effect of pooling
is to ngﬁh‘ﬁttle difference to the final estimate, why pool? And, if the
effect 8" to make a considerable difference, it js questionable if the
poaied estimate is an improved cne, Nevertheless, when the data are
~da complox form there are many sources each contributing a few
\ liegrces of freedomy, and many corresponding to no true technieal offect;
and often there are only a few degrees for the restdual. Then, pooling
may make a considerable difference to the degrees available. Perhaps
& good working rule is to decide on technical grounds, before examining
the data, whicl sourecs ave likely to contribute no more than randem
variation (sources that are generally known to be “in control” and
“high order” interactions), and to pool the eorresponding sums of
squares, and so on, with the residual unless the mean square for any
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one is vory different from that for the residual—say at a level of sig-
nificance bevond 0.01, leaving the sums of squares, and so on, for the
other sources unpooled, whatever the values of their mean squares, In
othér words, the main bagis for a decision on peoling should, aceording
to this suggestion, be technical rather than statistical, the statistical
yesults being used only to prevent the pooling of estimates that are very
different.

In the mnalyses of the more complieated forms of data, there are
several mean squarcs to be compared with the residual, and, in the verg™\
eomplex forms that will be illustrated in the next chapter, there may
be manv. The same difficulties arise in testing the sig;ﬁﬁgati‘ee}of
these as of the significances of differences between several (pairs of
mesns.  The difficulty is tied to the general one of having, = list of
probabilities and deciding which eorrespond to signiﬁcaﬁee and which
do not; and the solution, which has yet to be obtaincd}depends some-
what on the number of probabilies in the list. v

It will be noted that the basic forms are bglaneed in the sense that
cach value of each factor is eombined once.\'@-"ﬁh cach value of every
other factor. This simplifies the arithmeficand algebra of the analysis
.enormously, an effect that bas to be cql}gi('fércd in designing the investi-

gation (Chapier 13). L\
.xf';\
Ol
o\



Chapter 11, APPLICATIONS OF THE ANALYSIS OF
VARIANCE: COMPOSITE FORMS

Therc is searcely any limit to the number of fors i which data can
be arranged for the analysis of variance, nor to the complexity of%he
forms. Many of them, however, are combinations of the bzls;i,g:{orllas
mtroduced in the last chapter, and these will now be Hustyated:

N/

Two-Factor Composite Form N

Data illustrating the two-factor eomposite 1‘{:|'mmr(({7\~in Tuable XIX,
and arve taken from a paper by Dr. B. P. Dutlifige and Mr. W, J.
TABLE XIX \\“
Rusvrrs oF Tesrs o8 ARTIcLES MapeO{ MuLrr-neanep MAacsisg -

Side : Lelt ~:~’:1‘! Right
—— AN .
S T T
Bol by L e |3l ads | s 708 9 01|12
No. \ | ‘ ] ‘
_ SRR S N v\ S SR R E N S R
N\ 7 . ‘

8t 28125 a0 23! 311 33| 34| 35 27 37| 2
33| 36,4\30; 30 2| 27| a6 o9y 35i 36| 20 39
261 Y| 20| ;1| 28| 93] 31 201 30 32)] 4
31 b3 31| 33! 32 32 43| 30 35| 23| 42| 36
SNGBLL 31| 33 ‘ 27| 28 41 35 ‘ 32 | 43 36
B 39| 20| a7 ) 310 31 33| 34! 35‘ 30| 82f 30

WNIL 35 310 36| a5 | 37| 23! a1 | ag __
NP2t 88| a6 45| 23| 13 3 ‘ 27| 30| a8 ‘ 371 51
mw) 1 —— I ! —
\'n‘n.uls_ 249 | 208 | 241 | 273 | 230 | 257 | 265 | 260 | 271 " 2583 [ 283 : 313

Jennett.*  Articles were made on & machine with twelve heads and
tested. In the original paper the number of artieles per head varics,
but Table XIX eontanins only the first 8 results belonging to each liead.
The wnits of the test results arc unspecified,

* Jenernal of the Institute of Eleetrieal Eugincers, Vol. 87, No. 523, 1940,
i 128



TWO-FACTOR COMPOSITE FORM 129

First we may regard Table XIX as being in the single-factor basie
* form, and analyse the variance into two parts: hetween the 12 heads
(11 degrees) and a residual within heads {12 X 7 = 84 degrees) ; the
results arc to the left of the columns of Table XX. The between-head

TABLE XX
ANALYSIE OF Vamiaxen oF Tesr Resures oF Tapre XIX
- ! |
) s Sum of ! Degrees of Mean \
Bouree of Variation -~
Bguares Freedom Hguare A+
¢\
- AN
Between sides 263.3 i zﬁg.ﬁ
Betwoeen p 3
hends | Between heads 648.6 11 5{?
within sides - 385.3 [ 10« N ;:. 38.5
Within heads 2330.9 R 27.8
s )
x'\\#'
Total 297%.5 &

" mean square is greater than the residial‘ab a level of significance he-
tween the (.05 and 0.01 levels. )

The head means themselves ‘f;r'syt be arranged in the single-factor
form, azg shown in Table XX ~where the first mean of 31.125 is the first

total of Table XIX, 249, dixided by 8 and o on, This may be treated
like any other table h’)\bhé'single-factor basic form, and the variance

ol
N
e

R TABLE XX1
:Myﬁks or Tape X1X For ThHE Various Huans

‘M
N _
R fide Loft Right
X :..\’;;' e
) _ 31.125 | 33.125
33,250 32. 500
30.125 33.875
34.125 35.375
28.750 35.375
32,125 30.125
Side means 31,583 34,806
Grand mean 33.240
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may be anulysed into two purls: befween sides (1 degree) and a
residual within gides, but hetween heads (235 == 10 degreesj.  For
imchusion in Table XX it is convenlent to modify the arithmetical
procedure slightly, When performing the basie analyses, we summed
the squaves of the deviations from some grand mean of the various
factor means and multiplied that sum by the number of obsorvations
per mean in order to nake the mean square directly comparable with
that for the residual, This practice is extended, and the variongsums
of squares in the analysis of Table X X1 are nultiplied by the tamber
of original articles or values per mean.  The results are in¢ Fable XX.
The sums of squares are O

N

263.3
385.3

A8[(3L.383 — 83.240)% 4 (34.896 — 33.240)7)

&
8[(31.125 — 31.583) +-- -+ (33.125%> 34.896)° 4+ -]
648.6 = 8[(31.125 — 33.240)% ...+ (3{5\}25 — 33.24017 - -]

The multipliers arise beeause there arc A8%articles per side and 8 per
bead. Now let us consider tHie resulfsof Table XX,

The distinetion between the two §idfs of the machine has been made
beeause it was known in advapge \that there is some technical faetor
cominon to all heads on g %i'du:'but- different for the two sides. Dr.
Dudding and Mr. Jennett do ot state what the factor 1s, but in order
to give a concrete pictqrc we hiay imagine the following situation,
which may be rm-‘o]t'n?g to the engincer but will illustrate the inter-
pretation of the anh{}‘mﬂ We may hnagine that the heads of each side
are driven from{&common shaft which is driven through a scparate
Pinion geared §0/the main drive and that, owing perhaps to wear, the
two “side’.’qéiziions may not be quite the same and, further, that any
differenges “between the pinions cause only a dificrence in average
qualipybetween tho articles produced on the two sides; sueh a differenec

13 tlig“side effeet. Likewise we may imagine that the drive to the

Jads from each “side” shaft is through 6 “head” pinions which may

¥ary in sueh a way as to eause differcnees in average quality between
the articles produced on the 6 heads on a side; these ditferenees we shall
call the head effect. Finally a complex of random ecauses produces the
residual variations between the artieles produced oun any one head.
The offect of the arithmetical procedure behind Table XX is sueh that,
if there were no head effect, the mean square 38.5 would he statistically
equal to {if that term may be used as short for “not statistieally sig-
nifieantly different from™) the mean square 27.8.  In faet, the differcnce
lies well below the 0.05 level of significance, and there is na evidence
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of a head effect {(although we ean not of course say that the head effect
is non-oxistent). If there werc no side effect, the mean square 263.3
would be statistically equal to 38.5, irrespective of whether there was
or was 1ot a head offect; and it would be statistically equal to 27.8 1
there was no head effeet. The value F = 263.3/38.3 = 6.8 lies between
the 0.05 and 0.01 levels of significance for 1 and 10 degrees of freedom;
the side effect iz probably real.

It may be asked, why not compare the mean square 263.3 with 27.87
1t scems clear that here, as Jong as the possibility of a head effeot i
entertained, the mean square of 27.8 under-cstimates the erropayith
which the side effect is measured. Differences between the headpions
coniribute to the apparent differcnee between sides, and their effect
must be baken into account in estimating the error (ie., th€ d8pominator
for F must be 38.5). But, it may be urged, we have alféady shown the
head cifcet, to be statistically not significant; may 8 hot make use of
that conclusion and test the head effect by F)= 263.3/27.8 = 857
"There iz a strong temptation to do this becausé‘hﬁs value of F lies well
above the 0.01 level of significance for 1,ah~cf 84 degrees of freedom;
and since the head effect is so far from héibg significant this seems to be
8 reasonable thing to do. Howevm;,;i'f,the force of these arguments Is
admitted, it would be logical tq,pémbine the estimates 38,5 and 27.8
and obtain a pooled estimate gfdhe residual mean square based on 94
degrees of frecdom; and when this is considered it will be seen that the
whole issue is the same asduises in the issue of the pooling of estimates,
discussed in the lastéRapter (p. 126).

Sometimes, in this kind of enalysis, the mean squarc~oceupying the
place of 263.3 iTahle XX ean be greater than that oceupying the
place of 38.5, bﬁt- not significantly so; that corresponding to 38.5 can he
greater tlLaxris\-hat corresponding to 27.8, but not significantly so; and
yet that edrregponding to 263.3 can be significantly greater than that
corrfmﬁonding to 27.8. This iz a tantalising situation, and the only
’{:e{rt&;]in' way out is to obtain more data; although technical knowledge

{ WAY sometimes show & way out of the dilemma.

After the significance of any effect has been established there fellows,
as always, the step of techrical interpretation and action. Here the
mere knowledge that a side effect exists may suffice to call the engineer’s
attention to something that needs examination and sorrection; he may
or may not be helped in this by the knowledge that the right side pro-
duces articles of the higher mean quality. Tt is interesting to record
that, when the machine of Table YN was examined, the cause of the
difference between the two sides was discovered and climinated.
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I required, confidenee Bmits to the difference hetween 4Ny (W0 means
can be set in terms of the appropriate crror vartunee, m the way ilus-
trated in the last chapter,

Alternatively we may imagine a large nuiaber of machines like that
of Table XIX, with side and head pinions that vary at random. Then
there are three contributions to the total varighility, with variances
due to the side effect (v, sav), the hoad cffect {or® sav) and the random
effect {o” say). Then the mean squares of Table XX are estimates\of
the following variances:

N
263.3 — 4842 + 8a,2 4 5,2 R \)
38.5 — 8¢4° + o,2 G
"
278 — & 0

where the arrow sign — means “cstimatos” and t’}?(%\multiplicrs 48 and
8 are the numbers of artieles per mean. This can\be fairly easily shown
by an extension of the arguments on whicheorrected variances were
derived in the last chapter. It is easytorsolve these equations and
obtain the estimates of the corrected Variances o o, and o,% and
these may be used in any of the waye illustrated in the last chapter.
Here the estimate of o, is almogt Yalueless since there is only 1 degree
of freedom for sides; but, if Qt‘hi;‘i"esults for several machines could be
combined, a better estimate would result. In many investigations, of
course, there will be mor.c\f.han two members of the second factor,

It is well to empl af\iise‘thu asstimptions that underlie this anulysis;
we have encountere}tlmit' kind before, We are assuming that the
difference betwgenhsides s, on the average, the same for all heads on
cach side, and’tht there is no other effect of sides, Thus differcnces in
the state Qf'%e‘ilr of the side pinions could affect the variability of the
artieles){i‘oduced on & side; we are assuming that this is not so and
that the“within-side variations are the same for both sides. Corre-
spopdihg assumptions are made for the head effects,

“\Pable XIX may be looked at in a diffcrent way; it may be regarded
\ﬂé giving 2 sets of 48 results to which the # test might be applied to
measure the side effect. In applying this we would assume the varia-
tion within each side to be random  the analysiz of Table XX fests this
by investigating the significance of the head effect. Were this signifi-
eance to be established, it would be necessary to regard the results for
cach head as forming a sub-sub-group or a cluster and to apply the

{ test to the 2 sets of 6 means of "Table XXL Incidentally, when this

& done, ¢ is tound to be \.?%1‘3‘,3/38.5 = 2.62, thic degrees of freedom ave
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10, and the probability leve! of significance must be the same as that
for the corresponding F.

It is worth while comparing Tables XI {p. 113} and NIX in order to
see the difference between the two-factor basic and compesite forms.
The super-imposition of factors one on another ean be extended in-
definitely. For example, if data like those of Table XIX were available
for several machines, and if there was nothing eommon to the left sides
of the machines, and to the right sides {ie, if the side pinions were
combined at random), the form would be of three factors super-imposed, ¢
on one another in single-factor basie forms. This may be set out dia-,
prammatically as follows: ) \ N

%
.

Maching No. Side Head "

1 g{tic!es !
PR a4
/ 5 —f—
6 _..v_—-—

3 * 2 3 § T R T %

r & 4 3 T T

T 3 ¥ 3 3 3

\ A" elc. for several machines

Three-Factor Composite Forms }
that iljustrated at the end of the

One three-factor eomposite form is
factor on single-factor on single-

last section; you may call it the single-
factor form if you wish,

In a systematic development of the subject the next three-factor
composite form wounld probably be the single-factor on two-factor
form, such as would result were there several blocks of results like
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those of Tables X1IT (p. 116) and XV ip. 1204, with the hlock means
themselves constituting a single-factor form and with nothing conmmon
between the factors for the blocks. TIn Table XTI, for example, this
could oceur for ingots, since each bloek wonld necessarily refer to dif-
ferent ingots, but it could not occur for orders, since sach block would
contaln the same 4 orders. I cannot remeomber ever coming across the
pure single-factor on two-factor eomposite form, und can give no
example here, ~N

"The two-factor on single-factor form is fuirly common; it is &xempli-
fied by Table VIII {p. 108). The varn tolals may be arggnggd in the
way shown in Table XXII, which is of the two-factar for'n:ﬁ Previously
means rather than totals have been treated for ease:@fﬁ;gzxposition; but
the computation is easier if totals are used, and as Mg analysis becomes
more complex this consideration beconies more"*ig\nznortant. It will e
assumed that vou understand the analysis of S driance cnough to permit
the use of the totals in all subsequent amalvees in this chapter. The
computations will not be explained, bl&}ilcznse notice that, where in
treating means a sum of squares wouldWhe multiplied by a number {the
number of observations per meanain lreating totals the sum of squares
is divided by the same number:.j;'

oy
*

WTABLE XXII

ToravLs or B“H{AKAGE Rates For Yawss oF Tapie VIII

% _3 —
,\\ =
N Twixt
£, i Cotten
o N ! Tatals
N Low | Medium | High
4 ”\ W
O -
R\ Cotton 4 401 216 | 221 838
AN A ? Cotion B 234 7 230 164 682
Twist totals . 655 475 300 . 1520
o |

You may remember that the 6 yarns of Table VIT{ were spun from
two cottons, A and B, each with threc twists, £, Af, and H; and that
we constdered as one poszible technical explanation of the significant
varn differences that eotton A may on the average be worse than cotton
B for all twists as shown by the two total breakage rates in the last
column of Tabie XXI1, and that the qualily may deteriorate steadily
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for both varns as the twist is decreased as shown by the three twist
totals of the last row of Table XXII. The further analvsis of variance
wili cnable us to examine this possibility. The full analysis is in Table

TABLE XXIIl

ANALYSIS DF VARIANCE WaRP BREARAGE RaTr:

l
Source of Variation Ram of Squares Begrees .Of Mean
Freedorn | Bquare
A\
Cottons [ 450.7 1 451,
Between yarns| Twists | 8487.7 2034 .2 842 698 191,?.‘
Residual | 10023 e JH01
Residual (within yarns) | 5745.1 48 l@\ /
Total 4232.8 53 !
Y

XXI1II, where the results on the left of e.ap-ﬁ: column are fransferred
from Table IX. The sums of squares for,cottons and twists are

8387 -+ 682\ 1520°
273" 54

45(L7 =

and W
655H 4 4757 + 300° 15207

2034.2
RS 18 54

The residual meafd#quare of 501 between yarns is due to error plus
interaction betwebj;?cottons and twists. It is greater than the residual
within yarns thé&value of F = 4.2 lying between the values on the 0.03
and 0,01 levely’of significance for 2 and 48 degrees of freedom. Thus,
cither {J')\ hmre is an interaction, or.{2) the error between yarns i8
gl‘c‘at,'el\'.thén that measured by the variation between warps of the same
vémy Yhe possibility of a set cariation which is confounded with the
vath variation is mentioned on p. 110}, or (3} both (1} and (2) are
operating, Had there been complete replication, factor (2) would be
inoperative, and the analysis would have allowed us to investigate the
interaetion.

With which residual should the cotton and twist mean squares be
compared? There can be no question that the residual between yarns
nust be used, since it possibly measures a source of error not measured

K
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by the residual within yarns. On this basis neither the cotton nor the
twist effect is signifieant, and we arc loft with the result, that the yams
differ, but we do not know with what factors to associate the differences.
But suppose that the experiment had heen so arranged that the residual
within yarns eorrectly measured the error; what then? Then the
excess over 120 of the mean square of 501 would be evidence of inter-
action and not error; and no ardinarily useful technical purpose would
be served by the analysis in terins of the two main effects plus inter-
action. The usefulness of the analysis in these terms is that, if ‘there
proved to be no significant interaction, there would be a justified sim-
phfication in presenting the results as the two cotton mgans/and the .
three twist means measuring the two main effects. Then e crror mean
square to be used in testing the significance of theﬁ’ﬁfz'a'}n eficets would
be the residual within yarns (except for the considerations ralsed on
p. 114, U

Multi-factor Composite Forms N

No useful purpose would be served ,b?:;.’ttempting to extend further
the classification of the composite formis or to illustratc each one. As
the number of factors increases"jthc number of types and the compli-
cation of the analysis inereasestenormously, and expericnce s necessary
hefore one can move with? 4ny confidence in this field, Moreover,
although the very complex forms are sometimes nserd and aceasionally
may be useful, they araniot likely to have g very wide application in
industry. The diffieuity of cheeking the assumptions and of making
the results of ananalysis mean something tangible to the technical man
usually makeg’ it preferable to break down a complex ficld into rela-
tively sim le parts and to investigate the parts separafely, rather than
to combineeverything into an omnibus analysis,

N?\ heless complex arrangements are sometimes desirable or in-
cvitable, and the following two examples are of interest,

L\ The first involves & further analysis of Table XV {p. 120) giving the

\_‘: speeific gravities of bricks. For each kiln the zones are in three layers:

1,2, and 3; and in cach layer are 5 places: the right (R}, left (/:), near

the wicket (W), the centre (C), and the back {B}; so that the 15 zoncs

are the combination of two main factors, layers and places, and the

zone totals may be arranged in the two-factor form of Table XXIV.

The results of the ahmost complete analysis are in Table XXV, where

the resuits of Table XVI arc given to the left of each column. The
other sums of squares are
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122% + 1257 +-.. 6582
214.05 = - —
24 120
2342 4 181% 4- 2432 6582
56.12 = - —
40 120
and
£3.55 is obtained by subtraction
AY
y TABLE XXIV
Torans oF Sprciric QraviTes oF Bricks For ZONES OF TarLe XV < \“"\,‘
O
Place N
» Lutyer
' \\'l}ot.a.ls
R L W [ BA\Y
1N
K N
Layer 1 12 0 48 | T4 | 28N 47 | 23
Layer 2 36 32 55 287 32 181
Layer 3 44 45 65,: 55 34 243
et
Place totals | 122 | 125 |94 | 104 | 1I3 658
‘. R
O

¢ <~.}TABLE XXV

ANALYSIS 0F\WARIANCE OF SPECIFIC GRAVITY OF Bricks
(Um're{ 'gW'SPECIFIC CgaviTy MuLTiFLIED BY 200}

:1\~.'
Source of Hum of Degrees of Mean
'\\Vﬁriation Bquares Freedom Square
AN
\./ Kilng 20.77 T 3.0
N Places 214.05 1 53.5
Zonesy Layers 353.72, 56.12 1412 25.3128.1
Residual 1 83.5a 8 i0.4
Residual 11 679 .48 03 6.9
Total 1053.97 119
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The residual 1 contains residual 11 plus the effeet of the interaction
between places and layers, but this intevaction is not statistically sig-
nifieant (F = 10.4/6.9 = 1.5 1s well below the 0.05 level ior 8 and 98
degrees). Here there is no error, and the place and luyer mean squares
must be tested against that for residual I. Only the plaece effect is

-statistically significant, but, of course, we can not say that there is no

layer effect. 1f, for the sake of argument, we ignore questions of sig-
nificance and treat all the effects as statistically significant, we\may
ealeulate the enrrected variances as follows:

Kilns Z‘m:o
Places (main effect) (53.5 — 10.4); "’4 =138
Layers (main effect) (28.1 ~ 1040 10 =04
Place X layer intersetion {10.4 -+ 6 /8 =04
Kiln X zone interaction + random ...\

varistion within zones \J 6.9

These may be used in the ways 11]u==trat,ed Mthe previous chapter to
measure the importance of the various sq{fer:’ca, as contributing to the
variability of the bricks. N/

It was staled above that Table, XXV presents an unalysis that is
almost complete; for completen&s‘: the residual 11 must be split up.
For cach kiln of Table XV “eﬁan find 5 place totals and the 40 totals
can be put into the two-facter forra and the sum of scjuares be analysed
into parts associated with“places (4 degrecs of freedom), kilns (7 de-
grees), and places,}(’”kﬁlns interaction (39 — 4 — 7 = 28 degrees).
Similarly we can find for each kiln 3 layer totals and analyse the sum
of squares into parts associated with layers (2 degrees), kilns (7 de-
grees), andy layers » kilng interaction (23 — 2 — 7 = 14 degrecs).
The rLsultsjor places, layers, and kilns are already entered in Table
XXV t’}e two interactions form parts of residual II, the remsining
part».'b& ed on 98 — 28 — 14 = 56 degrees of freedom being assoeiated
With' the places ¥ layers X kilns second-order interaction. This see-

.\ {ohd-order interaction mensures the variation in the places X layers

vV

interaction from kiln to kiln, or the variation in the places X kilns in-
teraction from layer to layer, or the variation in the lavers X kilns
interaction from place to place. 1t is a comphieated thing to think
about theoretically, it ¢an not casily be given any great technical sig-
nificance, and its existence is almost unbelicvabic on technieal grounds,
when there is no main kiln effect (although such existence is theoreti-
cally possible). Therefore it will not be profitable Lere to pursue the
actual analysis so far,
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TABLE XXV1

Wagr BrEakacE Barrs

Setting. Types I and III
"f‘;?ftin% Gaiting | | r ! Totals
pet. [a| Tia | Ie! Ub{ 1| 16| He| | I
Ia | 11 | Ite | 1He | 1316 | 11 | I11a | IH1b | THe
1 56| 27| 2.1| 0.6 1.8] 0.8] 3.4) L4} 2.8) 208
la 2 34! 2.5 2.2| 0.6| 2.5 0.3 0.8 1.4 Nz
3 78] 2.8] 2.0| 2.8 0.8] 3.17 2.0) 2.0 0,64.)23.9
—! A— ,‘;"
Totals 116.8| 8.0] 6.3| +0| 511 40| 6.2} 4.8hwd| 801
m\\
4 22| 22 2.4| 45! 48| 4.2 a9l U1 0.8 24.4
16 5 54| 25| 5.0 5.3 2.2 0.8 g0y 0.8 L7 27.3
e | a1l 17| 25| 20| 17| Ll 17| 0.6} 188
Totals 113.7| 6.4] 0.0[11.8| 8. 7h&A| 4.2| 3.6 &1 67.5
7 11! 25| 6.7 2.2k 3w 2.8 1.7| L4 11.8| 27.3
Ie 8 8.4|11.5; 2.5 LANL.T| 14| 1.74 3.1 0.8| 28.5
9 73| 56| 2.8| @2 7.6{ 1.7| 3.7} 4.8) 6.3 46.0
Totals |14.8|19.6 Q:"u asliz.a| 5.0] 7.1| 7.3:18.9| 10L.8
Grand totals | 45.8 3*@['2&4_2 o5 6 |26.2|16.0|17.5{15.7|26.9 | 220.4

Table XXVI rivosents the results of a fairly complex form of experi-
ment that llas\'i:(g{ures often cncountered in technical experimentation.
The gcncra\’&iin was to find the effect on the warp breakage rate In
cotton y\{éaving of certain loom settings. There were three types of
settipgypes I, 11, and 11T; and for each type three values: e, b, and
ol Al value of any one type can be combined with any value of cach
othér type, so that the possible combinations gave 3x3X3=27
seitings altogether.

Type T settings could not be chunged easily;
structural modification of the loom, and so there were 3 looms, one cach
for settings Ia, I, and le. It would have been preferable to have had
at least 2 loows for each setting of type I, so that loom differencs®
other than those due te the sciting changes could have been brought
into the estimate of crror. Resources were not available for this, but

a change involved a
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care wag taken to standardise the looms, and the technicians had con-
fidence that any differences in results between them could be attributed
to the differences in the type I setting. An impurtant possible source
of error was considered te be the “gaiting” or setting-up of the warp
in the loom. This must necessarily be done independently for each
loom, and replication to measure this error was securcd by having 3
independent gaitings for each loom. The arrangement of this part of
the experiment is shown in the first two columns of Table XXVI.
Type I1 and type IIT setfings could be changed quickly and easﬂy,
and without disturbing the gaiting, so that 1 was convenlent t\divide
the weaving period for cach gaiting into @ parts and to assigq'l thém at
random to the 9 sctings formed by combining types IT and”III. The
full results are given (not in chronological order} in Table XXVI
Before analysing the results, let us inspect thend, “They are given
to one decimal place and some figures are repdafed exactly several
times (e.g, 0.6, 1.4, and 1L.7), because only & few warp breaks were
observed for each result; bui the time f '}ct&"with which they were
divided to deduce a rate was often the¢snle. Had this factor been the
same for all periods, the raw numbers o warp breaks eould hawve been
used in the analysis. Furthermorethe results vary enormously, from
0.3 to 11.8, but there are no graihds for rejecting extreme values as
untypical. The highest valueaiih order are 11.8, 11.5, 8.4, 7.8, 7.6; and
the lowest are 0.3, 0.6, 0.4,\0.8, cte.; there iz no dividing line which
would set off one or {#u extreme values as untypical, and we must
accept them all as belonging to the experiment. A considerable varia-
tion from a valug wear a “floor” (which is a breakage rate of zcro)
often indicat-es\a'i}ossible heterogeneity of the error variability; one
would expectMt to be greater for those scttings with a higher mean
breakage(rate. Knowledge gained in other experiments on warp breaks
suggestsithat such an effect would be eliminated by finding the square
reotiof each result in Table XX VT and performing the unalysis in terms

a . \
swi.¥alues so transformed. Such a transformation facilitates the statis-

#cal interpretation of the data but it complicates the technieal inter-
pretation, and we shall proceed to the less laborious task of analysing
the data of Table XXVI in their present form.

First let us deal with the gaiting totals in the last column of Table
XXVI. They are unaffected by the changes in settings II and 111,
since all those settings are equally represented in each; and the varia-
tions between the 3 gaiting totals for each setting of type I include all
the errors that affect the type I comparisons. The analysis of variance,
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which is of the one-factor form, is In section 4 of Table XXVII, the
sums of squares being

6032 4+ - 220,42
36.67 = —
27 81
082 4. - 6012 4---
3641 = —. o +
g 27

The value of F for testing the type 1 setting effect is 18.3/6.2 = 30\
and is well below the 0.05 level of significance for 2 and 6 degrees i
ircedom. There is no evidence that the variations in the sgt{lﬁgs\ of
type I affect warp breakage rate. M

The full results in Table XXVI for each sctting of i¥pe I form a
block in the two-factor form, and the sources of vari{ti{in are settings
I and 11T (8 degrees), gaitings (2 degrees), and &Yresidual (16 de-
grees). The sums of squares and degrees of freedom may be added for
the three bloeks to give the resulis to the left © \the columns of section
B of Table XXVII. The sums of squaregare™ -

1682 -+ 13- 6017+
158.04 = e L
3y 27
92087 4 - ~LF 2442 4o 6017 +---
36.41 = : X T
RN 27
+$ )
AN 60,12 4 - -
0265 SO + -+ 222 o) - 5

Variations si:is?)ciated with guiting changes do not affect the com-
parizons betwéen the settings of types II and 111 and are “taken out”
in row \@1 't Table XXVII, which is the same as row (2). The excess
of rqsi@u al G over residual W suggests at first gight that the disturbance
,Qué\f-é re-gaitings does add to the errors of the comparisons for type I
\séatfings, but the difference is not significant (F = 6.2/4.3 = 1.4 lies
well below the 0.05 level}. Nevertheless, in view of the remarks on
page 126 about the pooling of estimates of variance, it is well to use
residual W for testing the effect of settings II and [II. We have
F = 6.6/4.3 = 1.5, and this is below the 0.05 level of significance.

We may, however, proceed further. The three rows of totals and
that of grand totals in Table XXVI form a table in the two-factor
form, with sources of variation as follows: settings 1T and TII {the
main effect common to all blocks, with 8 degrees), settings I {2 de-
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TABLE XXVII

ANALYSIS OF VARIANCE oF Wanr BrEakacE RaTes o¥ TABLG XXVI

APPLICATIONS OF THE ANALYSIS OF VARIANCE

Source of Variation Sum of Df:greps of | ._‘Mean
Squares Freedom Square
A. Belween goitings O\
(1) Settings I 36.67 2 188,
{2) Residual & 36.41 i |81
N
(3) Total 73.08 8 4 W
B. Within gaitings O
Betlings 11 and 1 Y
{main effect) I80°88. ) E [10.1
(4) Settings I1 \
and III | Interaction [ X IT 158'0?’ \Y 24 6'61
{5) and 11 L Viras 16 4.8
(6) Gaitings { = residual ¢} 36,41 6 6.1
(7) Residual W 20820 48 4.3
(8) Totai | 202,65 78
C. Between seftings 11 and I1] ‘v .
(9} Settings IT L 35.92 2 18.0
(10) Seltings I11 PAN 10.07 2 6.0
{1} Interaction [ ><\‘III 34.89 4 8.7
{12} Total O 50.88 8
o) o
grees)

xfn{d the intcraction between settings I on the one hand and

settingg T and I on the other (16 degrees). The fizures for the

fivstland third of these are in rows (4) and (8} of Table XXVII. The
\3-‘“1\g,tua1 equality of 4.8 with 4.3 shows that the eorresponding inter-

hiction has na statistical significance, but the main cffeet of scttings If

and III is now probably real (F = 10.1/4.3 = 24, and it lics between
the 0.05 and 0.01 points for 8 and 48 degrees). This result is an
example of a not infrequent experienee, where the significance of an
effect 1s, so to speak, “diluted” by being combined with one that is
msignificant.
Finally, we may put the nine grand tofals of Table XXVI in the
two-factor form with sources of variation: settings IT {2 degrees),
settings ITT ¢2 degreesy, and the interaction hotween setiings 1T and
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1iT. The results arc in scetion C of Table XXVIL and each effect
must be tested against residual W. The only effect that is significant
is that of settings 11 (F = 4.2 lies between the 0.05 and 001 levels).

Thus the results of the experiment “boil down” te a statement that
the settings of fype II probably have an effect on the warp breakage
rate, the means being

' 1015 .
Setting Ile —— =38

T 7 s
(7.8 N
Setting 115 —— =125 AN
27 AN
_ 60.1 \Y
Hetting Il = = 2.2
4 o\

Sinee there are 27 readings per mean, the standdsd érror ol the dii-

ference between anv 2 is V2 X 4.3/27 = 0.56.,,'}’%9: difference between
the mesans for settings 116 and Ic is small q@ﬁx}p‘:ircd with thig, and the
effect is duc to setting ITa giving a higher Braakage rate than the other”
two, o\
Had the interaction in row {3} p«f::’“I‘able SCXVII been significant, it
would have becn worth while cansying the analysis further in erder to
scparate out the ﬁrst-ordcr.inte'r'aetions, settings 1 I and settings
I« 111, and the second-ondm: interaetion settings I x IT X 1L Even
with an insignificant JueAor this interaction there is a possibility of
one of these effects k&g significant, but it is remote, and it is not
worth while earrying: the analysis further.

When we look back over the results we sec that therc are as many
results for eadh of scttings I as for each of settings 11, and that the
differencegibetween the three means sor the two types of sctting are
abOHt.t}fe' game. [See the mean squarcs in rows (1) and {9) of Table
XXMTE]  Nevertheless the main offect of settings 11 is statistically
*ii%liﬁﬁﬂant and that of settings I is not, because the comparisons of
séftings I are possibly subject to a greater error than those of settings
11, and moreover the greater crror 1 estimated on fewer degrees of
freedom. The difference between the fwo errors {residual G and
residual W) is not statistically significant, but we are not justified n
assuming that there is no difference.

From o technical point of view, the results of the experiment are
meagre and disappointing. The experiment can be regarded as little
more:than exploratory, giving information on which a further onc can
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be planned, But the results illustrate a number of statistical points,
and that is the reason for treating them here.

Incomplete Forins

All the basic forms except that with one factor are squares, in the
sense that the number of representatives of each factor is the same,
and this circumstance simplifies tho analysis enormously. It is pos.
sible, however, though difficult, to deal with some incomplete forms
such as the so~called quasi-Latin squares and Youden squares, ‘Which
have more rows than colunns. Sometimes, too, sonietlhing ’&eg},“-‘l‘ong
with an experiment arranged in some basic forin, and one € Yvo results
are missing; the analysis can nevertheless be perf 01'mcd::}‘The existence
of these possibilitios ean only be mentioned here; You should refer to

the text-books for full information. A
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Chapter 12. APPLICATIONS OF CORRELATION ANALYSIS

Correlation analysis is applied when two or more qualities are meas-
wred on each individual or unit and it i required to take account of
the relationskips between them. In their full development the methads N
form a considersble subject, and their applications are varied{“the
subject ¢an only be introduced here and a few of the most-typical
applications llustrated. Lo

e
N
S ‘0

Correlation of Two Variables ¢

L

In Table XXVIII (taken from Statistical Methods ‘E} Industry) are
given for 100 casts of steel the percentage of ironin the form of pig
iron and the lime consumption in hundred eight per cast; the order
in which the casts were made is regarded q-s’;%'ing no significance, and
the results are given in ascending ordep)of percentage of pig iron.
First we plot the two variables, as,’l}i Fig. 18; we notice a general
tendency for the lime consutnption 460 increase with the percentage of
pig iren (a tendency well knowli%o steel makers) and a eonsiderable
scatter, so that for any onefiercentage there is 2 wide variation in the
lime consumption. Thpi"téndenay is deseribed as a correlation be-
tween the two variab‘}@, %nd a diagram like Fig. 18 is termed a cor-
relation or scatter diggram.

One way of desehibing the “pig iron efiect” on the lime consumption
Is to divide th{casts into groups, each with one percentage of pig iron
or & narcowrange of percentages, and to regard the variation in lime
c-onsumpt&(oﬁ within each group as substantially random; the resuliz of
Tablen XX VIII are divided into 14 such groups by horizontal Lines.
rllhf-'fh we may find the mean lime consumption for each group, stuc!y
h# variations in the means, and perform an analysis of variance 1n
order to test the significance of the cffect and estimate the residual
variance. The mcan lime consumption is plotted against the mean
percentage of pig iron for each group as 2 circle in Fig. 18, and the
circles show the same kind of trend as the individual results exce;?t
that, becausc of the effect of the averaging, the seatter of the circles 18
less than that of the points. -

The analysis of variance is in the left-hand part of the columns of
Table XXIX. Since the number of casts is not the same for all groups,

145
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the ealculstions must l)e‘\{’)el'formcd somewhat in the same way as those
for the analysis of 'K{fbf'e XI {p. 113}, The value of F for testing the
significance of the between-group effect is 3222/847 — 3.8, and it lics a
little above th'e:,ﬁ'.()()l level of significance for 13 and 36 degrees of
freedom. IE N be noted that in this analvsis the values of the per-
centage of Gig iron merely provide a basis for dividing the casts into
gl'“ui}i}“’é make no use of the fact that the percentage vahies order

and gpace the groups.
M\:"}When we examine the percentage pig iron effect as disclosed by the
\Efoup means plotted in Pig. 18, the only feature that scems to have
any technical meaning is the trend which, as far as the data go, may
be represented by a straight line. The deviations of the points from
such a line scem to be purely sporadie, and we are prepared to beliove
that they are primarily duc to the residual variation of the individusl
values of lime consumption about the group eans and to the fact
that cacl point is the mean of only a few values. Not only docs the
representation of the pig iron effect by a straight line simplify the
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CORRELATION OF TWO VARIABLES

TABLE XXVIII

1y SreEL MAKING

u oF Prg 1mox AND Live Constumprion (HUNpREDWEIGHT PER GAsT)

1
I
Pig| Lime j Pig| Lime | Pig! Lime || Pig| Lime il Pig | Time
T
as| iz [(351 156 | 38| 145 [ 48| 212 | 45| 203
L25 | 141 i[85 185 38| 157 | 176 |48 1 241
26 | 140 | 35| 176 |} 38 | 164 [[44] 215 |48 | 242
20! 156 |35 | 198 [ 38| 175 —— A
; a5 | 104 |33 | 225 a5 | 17 [en| 188 D
30 | 165 33| o8t 45| 184 || 49| 204 )
0| 177 i 88 124 L] 45 | 18T || 4D | 286
a0 | 178 {30 132 [0l 100 |45 | 194 || 504158
30| 182 36| 146 |13 201 45| 216 $<.‘ 195
30! 184 36| 17¢ [ 40| 138 [[45 | 2DN5 146
511 172 |16 180 [ 40| 200 | 45| 21\}'50 | 198
a2 | 159 36 | s ;40| 223 |46 %5 -
32| 185 {86 201 401 24t 464 25 | 52 208
— i . 521 219
33| 138 (37| 196 | 41| 212 Wl o193 |52 ] 262
331 155 i a7 140 421 166\ 47| 197 |83 170
33| 170 | 37| 170 |42 | JB2 {47} 206 53| 188
33| 192 [la7| 176 | 4g{Nba | 477 218 ;33| 193
330 298 g7 | 182 i ae\ 213 [[47| 218 A3 219
341 161 | a7 | 1912 | 248 | 47| 220 |53 | 240
— 371 194N\ [ 47 | 274
35| 133 | 37 faw |l4s} 207 47| 31O
35 | 146 | 87| N\i6 | 43| 210 48| 170
N
70\l TABLE XXIX

\\~ ANALYSI® OF VARIANCE OF
S

7\

al
&

.\ “,gmlrce of Varialion

3

[Rf:gl'cssi(m line

Retween

groups | Doeviations from re-

Husidual

Total

preszion line

Sum of Bauares Frecdom
[20.255.20 I
41,890.79 | 13
112,635.59 12
72.709.05 86
o W

114,682.84

Live CoNsursdpiioN

Degress of

N ———

| 3,222,
P

Pt

Mean
Square

[ 29,255

1,053
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presentation of the results, but it comes nearcr, we helieve, to what
would be the result were values for many more casts available.

The most suitable straight line is that determined by the so-called
method of least squares and may be written

(Y-~F=aX-X (16)

where X is any given value of the independent variable (pereentage
pig iron in this cage) 2N
X is the,mean of the actual valucs of X
Y is the value of the dependent variable (lime con:smnpt-ion),
given by the straight line for the given valuesof X, and is
to be distinguished from any actual value oy
Y is the mean of the actual values of ¥ "G
@ is 2 eonstant known as the regression coqfﬁ{m’e}az and is calculated
from the formula \/

Z(X = XYV ¥)

a= - &

(X oK)
where T iz the same sign of summz;.t:iah as was used In equation (1) {p.
7). The regression coefficient may” be calculated by finding the devia-
tion of every value of X and ¥ffom its corresponding mean and surnming
the squares and products;Bift there are short-cut methods for which
you should refer 1o the{Pext-books. The regression line goes through

the point (X, ¥) an'd"h}s the slope .
For the data of Q&fﬂc XXviij,

= 40.54 ¥ = 191.04

. N\, ¥4 —_— _—
Z(X\%'X)(Y — Y)=1219184 Z(X - X)? = 5080.84
O~ a = 2.39957 (say 2.40)

{17

Ngw Ee are in a position to find the straight-line value ¥ for every value

(ol'X, and hence the deviation (¥ — ¥), and on squaring and summing
“\'these we find the sum of squares in Table XXX attributed to the
regression line—29255 20, Again there are short-cut methods for ob-
taining this value. The sum of squares attributed to the deviations of
the group means from the corresponding regression line values, 12635.59,
may be obtained by difference, or by squaring and summing (¥ — ¥}
The eorresponding degrees of freedom arc given in Table XX1X, and
they have been caloulated according to statistical theory so that the
mean squares may be interproted as follows. [f the variations in lime
consumption are purely random and unrelated to the pereentage of pig
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iron, all four mean squares in Table XXIX will be statistically equal
(in the sense defincd on p. 130). We have ulready seen that there is a
significant pig iron effect. If the pig iron effect is adequately described
by a linear trend, so that the deviations from the regression line may
reasonably be attributed to the residual variations, the corresponding
mean squares, 1053 and 847, will be statistically equal, as indeed they
are. In such circumstances, the pig iron effect is entirely assoclated
with the 1 degree of freedom belonging to the regression line, instead

of being divided over 13 degrees when groups are used, and is much more "\

significant. The ratio F' is 20255/847 = 345, and is about three times
the valne on the 0,001 lovel for I and 86 degrees. Thus we have fcgé'ste\d
the trend for linearity, and, by using the values of percentage pig ron
and taking acconnt of the fact that the cffect is & linear trendyave have
enhanced its statistical significance. The analysis of var\iai}ee based on
grouping would give the same sums of squares, and.héhee significance,
whatever the order of the groups; it is in aceordance with commonsense
that a set of means following a simple trend shpu‘lz}%e more significant
than the same means varying randomly. The “¢orrelation procedure
may be specially useful where the grouped;reéu}ts fail to give statistical
significance, o\ o

The regression equation itsclf may ]’).b‘liseful. It states what, on the
average, will be the lime consum;ﬁﬁt'}n for a given percentage of pig
iron. Tt does not give a very good prediction for a single cast, but the
average predicted consum‘pt{nn for a number of casts might, for
example, be compared viﬂr the average actual consumption m. order
to provide an index of %erating efficicney for a furnace, or source of
pig iron, serap iron ot lime, or whatever unit of operation the techni-
cian thinks it wokth studying.

Another uge.id to correct a eomparison of mean lime consumption
between t-an\sbis of results for differences in the pig iron. For example,
the 100, égists of Table XXVIII were produced “without slag control”
angd the ‘mean lime consumption is 191.04 hundredweight per east for
dumngan percentage of pig iron of 40.54. Another set of 100 casts was
produced “with slag control,” and the corresponding means are 1524
hundredweight at 42.13 per cent of pig iron. In order to measure the
effect of slag eontrol alone we need to correct the lime consumptions o
the same percentage of pig iron; let it be 4213. Then the c.om.ected
mean lime consumption without slag control, obtained with the aid of

the regression equation, is

191.04 + 2.40(42.13 — 40.54) = 194.86
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The correetion in this instance is quite unimportant, When the two
series have different regression slopes, the correetion will depend on the
value of the independent variable at wh:ch it 1s chusen to make the
comparison.

The regression coefficient may aiso have other uses. For oxainple, if
scrap iron (the alternative to pig iron) is dearer than pig iron, the
cost of the extra lime is partly offset by a cheapening of the total iron
when the pereentage of pig iron i increased; from the regression co-
cfficient and the costs it is casy to caleulate qt what relatnq cogts for
pig and serap iron the two cffects bal: inee, and there is ﬁ\changc mn
preference from pig to serap iron. {In this cxample gt,\ 1s assumed
that, within limits at least, the relative costs of the bwp types of iron
and lime alone matier; whetler or not this is SO doe:-_. not matter:
the aim has bheen merelv ta illustrate a use of the‘l‘&gre;-smq coefficient. )

The regression coefficient and values precdiéted from the regression
line are subject to sampling errors, of whiely account must be taken
if consistent conclusions are to be reae dd. These can not be dealt
with here, but the regression coefﬁcmnt is subjeet to a large standard
error unless either the residual menanuare 1s small or the number of
observations is large. &N

In Table XXVIII it is e%w for the techunician to chooze the per-
centage of pig iron as the independent, and the lime eonaumption as the
dependent, variable; vatistions in the former eause variations in the
latter. Sometimes, ‘l{o”»}m-er, the choice is not so elear; and there arc
two regression lin’kg\d’cmarrling to which variable is regarded as inde-
pendent. Thisdeads to a difficult kind of situation which can not be
treated here.‘\” )

So far\“c have fm*uq%(‘d attention on the relationship between Hme
cong ption and the pereentage of pig iron as expressed by the re-
gression hine; now let us eonsider the relative importance of this rela-
(tiwonship. The points in Fig. 18 are widely seattered, and, although
) their general drift is quite apparent, it is clear that there are factors
other than the pereentage of pig iron that are having an important °
effect on the variation of lime consmuption. When there is a general
tendency for two [actors to be related in this way, with variations
additional to that contained in the relationship, the factors are suid to
be correlated. Seatter diagrams for different pairs of factors can vary
from those in which the puints fall alinost on 4 line and there is little
seatter—the sort of diagram one would get by mcasuring fairly ac-
curately the diameters and circumnferences of & number of circular rods
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and plotting the two measurements—through those like Fig. 18 for
which both the relationship and the scatter arc clearly apparent, to
thuse in which the seatter is substantially random and no relationship
or correlation is apparent. Sueh diagrams show differences in the de-
gree or strength of the corrclation, in the importance of the independent
varinble as compared with all the other factors producing the scatter.
This is messured by the correlation coefficient, denoted by the symbol
r, and caleulated [rom the formula
" ~iv W _ _
IS Sl 01C Sl (8)
VY - XY - 1) R W
The correlation cocfficient is a dimensionless ratio. Tt is zero, if-there
is no relationship between the two variables and unity if. $here is no
seatter from the straight line. Tt can be posttive or negative, but the
sign mérely shows whether the two variables tend g Ingrease together,
or whetlher one nercases as the other decreases. Jé‘@r Fig, 18 the cor-
relation coefficient is +0.505, il
The correlation eoeflicient is useful as a shé:r}nand description of the
strength of correlation, but experience is reeiired to appreeiate if. The -
strength of correlation and its statisticajjéigniﬁcance are guite different
things. In Fiz. 18 the eorrelation.;i}aj'imt very strong, but it is over-

4

whelmingly signifieant. Y

Another instraetive wa}g"'{_ﬁ‘ lll()kil’lg at a correlation analysis is to
consider tle \.ariﬂbiﬁt}:\\lﬁ arriving at Table XXIX the casts were
divided into mroups, Partly te help the exposition and partly to test
the assumption of, the straight-line relationship. This is not v=ually
done; linear m}r{t.\_l{ltion is taken for granted, and then the analysis
of variance di%tes the sum of squares into two parts, one associated
with the 'r\:"g\ﬁ;gsi“n line (1 degree of freedom) and the other with the
residuajideviations from the regression (98 degrecs in Table XXIX);
th%«.ﬁhg\oud gives a mean squarc of 872, T he {otal variability of the
l'ﬁ\e 300115111[”}601] 18 measured by n mean squarce of 1159,'gi\'ing a
standard deviation of 34.1 hundredweight per cast; if the percentage
of pig iron is kept constant, the variability is reduced to the residual
value, with a standard deviation of 29.5 hundredweight per east. This
reduction in variubility is a measure of the importance of the effect
of the varintions in the pereentage of pig iron. Looked at in this waY,
‘;the offeet of the variations in the perecutage of pig iron Is not very
important,

L
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The correlation coefficient ties up with this reduction in variability
by the approximate formula

Residual standard deviation Vi
- Ll

Total standard deviation (19)
The quantity I -- r2is probably a more readily appreciated measure
of strength of correlation than ».

The results of a correlation analysis may be useful when copwaring
two series for variability, Thus the two sets of steel made Wth and
without slag contrel gave the results of Table XXX, Erbpdthe first
row of Table XXX it appears that slag control ha@\redaced the
variahility of lime consumption. But the saon{l grm shows that
there was less variability in percentage pig iron fop Jhe casts with slag
control than for those without, and, since hnge}sonsumptlon is corre-
lated with percentage pig iron, this would pPefluce some reduction in
variability of lime consumption. We may climinate this effect by
using the correlation coefficients and, &gwation (19) to cslenlate the
standard deviation of lime conﬂumptmn for constant pereentage of
pig iron; the results in the lastywrow of Table XXX show that slag
control has in fact reduced the variahility.

 “SYABLE XXX

"
REsuLes o Ta':rrsmoq BrEEL CAsPs WITH AND wireour Suac CoNTROL
- £ 3

. &
\ \ Without Slag | With Slag
\ Control Control

0

S&g’m!urd dewiation of lime consumption,
“hundredweight per enst, 3.1 21.7

WAN Standard devistion of percentage pig
\\ iron 7.156 4.42
Correlution coefficient 0,505 0.62
Standard deviation of lime consumption
{vig iron constant) 2.5 17.0

Multiple Regression

The methods of corrclation analysiz can be extended to cover the
casc of more than two variables; the following example illustrates a
practical application and also showq what the 1nethods ¢an do.

In the weaving of eloth it is important that the weft (or filling)
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packages should not disintegrate undaly under the forces of weaving,
and in order to control this a measure of the tendenecy to disintegrate
is required. The direct measure js the fraction of packages that dis-
integrate under standard weaving conditions, but this is very laborious
and upeconomical to determine, and it was desired to develop more
convenient laboraiory tests as a substilute. From a knowledge of the
physies of the situation, three different tests were devised which give
meastres we shall term Xq, X» and X, respectively. The problem was
to disgover {a! whether there was any advantage in using all three 0¢
two of the mensures rather than two or one, (b) if two or one are atiffi-
cient, which two or one, {¢) {or the chosen combination how thyaalues
should be combined to give n composite measure, and {d! };qw‘closely
the resulting measure is related to the divect measure of the fendency
to disintezrate. LV

An cxperiment was made by preparing 18 lots of\packages under
such varions conditions as are likely o obtain ip\phactice, except that
the variations wore somewhat cxaggerated ig @tder to enhance the
various effects and make them more easilyfépparent‘ From each lot
30 paekages were woven under standand:cénditions (somewhat miore
stringent than those obtaining in pmgt’i{’.e}, and the fraction that dis-
integrated was recorded. From otliéi‘ packages in the same lots de-
terminations were made of thenéasures X;, X, and Xis; these are
given in the last three colymn® of Table XXX, When the fraction
disintegrated was plotted se})}ratcly against each of the other variables,
the seatter dingram \va'k\bb'\riuusly non-lincar and the puints were not
uniformly seattered  Btatistical theory suggested that it might be
better to use, msthad of the fraction, the transforimed variable ¥, where

& in—1V/Traction disintegrated in degrees

The Vﬂlﬂ.ﬁ's\of ¥ sre given in Table XXXI and plotied against X, A,

and &N b1 Fig. 19. Tn the scatter diagrams the points for ¥ against Xu

“ﬁd‘;x 2 are fairly uniformly distributed about imaginary straight lines;

thie for ¥ against X, show signs of 2 slight curvature in the relation-

ship, but on the whole the transformation is reasonably satisfuctory.
First wo must choose the best single variable. The three regression

cquations are ealeulated to be
(¥ — 36.3) = —8.057(Xy — 6.32)
(¥ — 36.3) = —4.057(X; — 90.59)
(7 — 36.3) = —3.779(Xs — 27.17)

{
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TABLE XXXI

MeasvreEmEnTs Mabe ox Werr {or Froume) Packaces

Y X Xz Xy

3t 6.2 | 935 | 50.8

31 6.2 | 031 | 4].2 2\
21 | 1001 | 95.3 ! 554

21 8.4 | 96.3 ; 330 L)\
A7 1 2.9 | 82,9 | 43.0 o\
80 2.9 | 80.83 | 41.5 WV

35 VoA | 92,9 | 4ATE A

10 7.3 | 92.6 | 49.07

0 17.1 96.5 :51,&4\\'

0 | 10,7 | 96.4 i 5R.3

33 4.1 | 87.2 [\Mb.7

83 | 3.5 | 82.29M42.5

10 5.0 ; 935V 45.4

51 4.5 KNDO | 446

24 1 9.5 ¥ | 529

15 | 8.3 96.2 | 55.2

80 | 200 | 83.6 [ 42.0

90 [ N2e | Tval | 30.4

and the sums of bqlgﬁks of (¥ — ¥) associated with these three regres-
sions are rebpech{\ly 3383, 190,642, and 73%4.

reached fror'q a “Visual examination of T . 19,

Now,
with Xymr X, with X,

’\

efind which is the better combination of two variahles: X»
We can caleulate a multiple regression equation

Clearly X, is the best
single variable\You can judge w hether this conclusion would have been

2

Fic. 19,

X3

T T LI B P By s B At 2 R sttt W S
: - - - e
- L ] L]
- L] - . -
B L) . - L ‘n .. - . :
= *y - o
~ - - e * a L] -
AR [N Wt N T TR T ST N N N L SN TN SO N Bt Vi
34 56 7 8 9101180828486 8890 9794 96 40 42 44 46 48 50 52 54
X
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for cach by the method of least squares. You should refer to the text-
hooks for the detaile; here are the results:

(T —363) = —2.98H X, — 90.59) — 2.656(X, — 6.32)
(¥ — 36.3) = —3.825(\p ~ 90.59) — 0.320(X 5 — 47.17)

The sums of squares assoviated with these two regressions are respec-

tively 10,913 and 10,660, so that the regression on X and X7 Js slightly

preferable.

Tinally we caleulate the multiple regression equatien giving Y \in'

terms of Xp, Xy, and X it 18 (NN
AN

(F — 363) = —3.111(Xy — 90.50) — 3777(Xy — 632) ™
+ 0.8073(y = 47.17)
W
and the sum of squarcs associated with the l-egression':’is\l().QSl. The

total sum of squares of the deviations of the actual lees of Y from their
mean i 13,212, The sums of squares are cntcre\dﬁjﬁ"’-l“able XXXIL

 §

TABLE XXXII )"

- . ) . n
ANALYSIS OF VARIANCE OF VALUER OF Y (T4nLE XXX
oy

Source of n ) ) Degreesof | Mean
Vuriation Sum gfSquares Freedom Square
;"‘\
e ——
.\\ w
Regression on j N
Xz 7, » [ 10.642 1 10,642
% 10,013

Xi )| 10,981 271 1 271

N\ ‘
‘\;%w | 63 1 ]
Resiglual 2,231 14 159

p "\'. 3 ® L e —

N Total 13,212 17 ks

The sum of squares of 10,981 associated with the regression on X,
X1, and X avises from 3 degrees of freedom, and the residual of 223118
oblained by difference. Tt is the sum of (¥ — 7)¥if the values of ¥ are
caleulated from the above equation in terms of Xz, Xy, and Xy The
corresponding sum of squares for the regression on Xy and X1 is 10,913,
based on 2 degrees of freedom, and the difference of 68 represents the
additional sum of squares taken into account by including slso X3 m
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the equation. Similarly 10,642 is the sum of squares associated with
the regression on X, and in a sense the difference of 271 may be asso-
ciated with the variable X,. The sums of squares to the right. of the
second column of Table XXXIT show step by step by how much the
residual Is reduced by including additional variables in the eq uation, and
the caleulation is so arranged that, if any additional variable effects
no real improvement in the formula, the associated racan square is
‘statistieally equal to the residual mean square. The mean squiare for
the regression on X is greater, and significantly greater, than the{_’%sid—
ual, and X, at least provides some index of the value of ¥ fowany lot,
The mean square for the inclusion of X, (271) is larger tha'n\f-h\é‘residual,
but not significantly so, and there is thus no evidence thatvthe equation
involving X; and X, is any better than that involving\; slone. In
view of this it is very unlikely that the further inclusign of X5 would give
any improvement, and the fact that the mean’“g};uare for X3 is not
greater than the residual (it is less, but not Significantly s0) supports
this view. Thus we 1each the conelusion thatthe best single variable for
predicting the value of ¥ is X,, and thal” no improved prediction i3
obtained by using values of X, and™¥% in addition. The correlation
cocflicient between ¥ and X is 0.90)sh6wing that X, isa good index of ¥,
Indeed it is likely that the valuecg OR(Y — Y¥) obtained with this equation
are no grezter than ean be explitined by errors in the experimental deter-

- mination of Y. Problem (#%on page 153 does not arise, hut, had we
decided to use two or three variables, they would be combined by means
of the appropriate regzﬁé,ssinn equation.

It should be notéd that the sums of squares and mean squares for the
separate variab}e:ﬁ Xy, Xy, and X are not independent in the ways that
those for-thadectors dealt with in Chapters 10 and 11 are; they depend
on the 0rg%&};~fn which the variables are tuken. 1Iad we, for example,
start.eck:\;\?ﬁh X3, we would have found that an equation including Xs
and Xywas better than one based on X3 alone. The variables have been
tgs,]iéh in the order which reduces the residual sum of squares the most

~\u cach stage; there Is no theoretical justification for doing this—it
\ ‘merely seems to be a reasonahle thing to do.

Assumptions and Interpretation

The mathematical assumptions behind correlation analysis are that
the regression is lnear, and that the variability of the residual devia-
tions from the regression line is homogencous. If the regression is only
slightly curved, the linear corrclation analysis may be applied as an
approximation; if it is markedly curved, the methods of analysis can
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he extended accordingly. If the rosidunl variation is not homogeneous,
the enly pussible way ouf is to make some transformation of the
varigbles.

The correlation anatysis is purely mathematical and is not neees-
sanily deseriptive of the cansal system behind the results, Strictly,
the interpretation on page 149 of tlhe regression eocfiicient of 2.40 relat-
ing lime eonsumption to percentage of pig iron applics only when casts
of different percentages of pig ivon arc selected from the 100 casts of
Table XXVIII; il applies to other and subsequent casts only if the
same system of causes continnes to operate, and it 1s the techniqign’\s
rather than the statistician's job to decide whether that is likelyto ‘e
the case. The steel teehnologist would probably be able to statg-under
what conditions the regression coefficient of 9.40 is likely tb.apply; he
would specify the steel-making process and possibly the quality of lime
and serap tron uscd. \/

Likewise the regression equation for the weft packages (p- 153)
would not apply to packages made under co dittons not ineluded in
those under which the lots of Table XXXERere made.

When several variables are exsctly relatdd by a straight-line law,
- but are subject to ervors of measuzje’rﬁent, the measurements form,
seatter diagrams when plotted, hub-the regression coefficients do nob
cstimate the true relationships. BHis is a complicated question which
can not be dealt with here; youtare merely warned that statistics does
not often help us to go hehind errors of measurement and estimate true
physical relationships, )

In earlier years the{Correlution coefficient was much used as evidence
of causal relatiopghips, but it is now used in this way only with ex-
treme caution.y¥ery often two quantities are correlated, not because
one directly €3)ies another, but because they are hotl cffects of a third
cause or, c'&fﬂcx of causes, Attempts are then made to bring otber
factorg $to consideration and te separae their effcets by caleulating
?}a.?:tjq} correlation coefficients, which measure the correlation between
Pairs of factors when all the other factors ineluded in the analysis are
constant. Even these do not deseribe causal relationships if all rele-
vant factors have not been included in the analysis; and they may
mislead because the straight-line law is far too simple a deseription of
& complicated mathematical situation. These are the reasons Why
correlation analysis has not proved a very powerful ool {or .dls-
entangling causes and effects in a complex Gtustion. Tt is chiefly
useful for piving quantitative deseriptions when the eausal patiern
underlying the observations is fairly well understood.  On the other
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hand, oceasionally the only available information is data observed
under works conditions without any econtral, and correlation analysis
may have to be used faut de mienz in order to give preliminary hints
as to the important factors.

The methods deseribed in this chapter are based on the vethod of
least squares, and they must be used if significances are to be tested
and standard errors of the various estimates spectfied. It is always a
good thing, however, 1o plot the results in a seatter diagram, andgery
often an experienced man can do nearly all that is required by wela-
tively simple graphical methods. The wmore elaborate 'bﬁa;'stical
methods have their uses, but they should not be applied’:Liﬁ}amutimilly
aud in all eireumstances. ~ ¢
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Chapter 13. PLANNING AN INVESTIGATION

In previous chapters we have considered the apalysis of various
forms of data without giving more than a passing thought to how the
data “'gat that way”" I this chapter we shall consider the art off
planning an investigation so that the results lead to valid conclusigns;
reliably and economically. RV,

This planning involves first choosing the field of investigation: the
number of factors and the range over whiel they are tog ha, tnvesti-
gated. Sueh choice is governad largely hy technieal 1'atl1(§\1‘~thzm gtatis-
tical considerations, but it will receive some attentinn later in this
chapter. When the field has been chosen, the im-'esj;lgat.ion is designed
s0 that the results fall into a form easily gm’g&ptible of statistical
analysis and so that the assumptions underlyi}xyg‘%he analysis are satis-
fied. Associated with this is a decision(0p"the size of investigation
uecessary to achicve the required precigion, and the ehoice of a design
that will give this precision cconomically. The word plan will be used
to refer to the whole proecdure ﬂf \atranging an investigation and the
word design to refer to the ]@?ter’ ore statistical part.

Investigations and expepiguents will be referred to in a specific way.
In experiments there i {écﬁ]e degree of experimental control of the
factors; im-'cstigatiom%clude experiments and statistical studies of
uneontrolled variations. Most of the chapter applies to experiments.

Until compa aéi’:'ely recently, jt was common for an experimenter {0
complete hig.otk without considering the requircments of statistical
anslysis, dntfor him to turp to statisties only when the results were
In suel 8'mess that he could make little of them. Then be would offen
ﬁnd: t{}’f"t'the statistician also could make little of them. You may s2¥,
if %ot Like, that the statistieian is not clever envugh to analyse data
ivany form whatever, There are fields of investigation, notably in
agrieultural experimentation, where virtually no conclusions Can be
reached without statistical analysis; and the comumerce of ideas be-
tween experimenters and sl;atist‘-’icians in these fields has led to the
development of o statistical seience of experimental design, and to 2
regular habit of consulting the principles of this science before em-
barking on any investigation. The science is most bighly developed
for application. to agricultural and related experimentation, and the

154
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application to technological investigation is still at o fairly rudimen-
tary stage. The same general principles are valid whatever the field
of application, but the details must vary according to the circum-
stances. Most of the literature on the subject still applies to agrieul-
ture and related fields; it is important to distinguish in it genersl prine
ciples from specific details and to be cautious in applying the latter to
the field of industry and technology.

You may think that the claim of the statistician to have a say in the
planning of experimoents i an arrogant one, but to admit it 18 therely
to extend slightly the general idea of the experiruental seienti@qnethod.
The experimenter aims to set up a relatively simple systeth 6f causes
and effects so that ohservations on it provide data\ sisceptible of
analysis by the ordinary logic of the scientifie methbd." The statisti-
cian merely adds the requirement that the data &li=ll also be suseep-
tible of analysis by known statistical methodgs \IF you can reach con-
clusions without statistical analysis, there ig mb nced to consider it in
planning the investigation; but experie&ée,\shows that the statistieal

approach is often helpful even in cireuhdstaneces where it is not essential.
We shall first illustrate the principlegof design, by referring to simple
investigations in which a compgdrison is made between two “treat-
ments” and the standard erraftdorms the basis of the test of signifi-
cance. The extension to méire eomplex investigations will be consid-
cred in a separate seetioy? '
. o
Randomisation \

When applyinghﬁe ¢ test to the diffcrence hetweon two means, the
“head in the sand” statistician may be content to give a verdicet en the
statistic-al’sig‘zﬁﬁeance of the difference, but the scientist wants to know
whethcy\or, 0t the factors related to the two series have an effeci—
whetBetvin Table VI {p. 76) the source of the nitraogen has an effect
on i.ts’}]ensity, or whether the grinding svheels of maker A are more or

Aess cconomical than those of maker B (p. 94). The assumptions on

\ which such an inforence is based are fully discussed in Chapler 9, and
most of those of any Importance are satisfied if the arrangement satis-
fles the prineiple of randomisation.

In an investigation where there is no cxperimental eontrel thig prin-
ciple is satisfied by the adoption of a good sampling technique as dis-
cussed on pages 34 to 37, ensuring that no bins affects the differcnce
between the two means, and choosing as statistieal individuals clusters
that are statistically independent.

Most experiments are done with material that shows some puattern
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of variation. There are time trends, observer idiosynerasies, differ-
ences belween picees of apparatus, patterns of variation in the sub-
stances used, and so on. The clenent of randomness necessary to
satisfy the statixiieal assumptions can he supplied by distributing the
experimental verations st random over the field.  Suppose, for
example, that there ure to be two experimental treatments, 4 and B,
10 deferminations for each, and & observers, and that observer I will
make 8§ and observers 11 and 10T, 7 each. Then the plan of the determi-

natigns will he as follows: .

Observer 1 1, 2, 3, 4 5 i O\
Obgerver 111, 2, 3, 4, 5 6, 7 7\
2 3 4, 5 6 7 L

Obzerver 11T 1, 4, 9, b

?

where for cach cbserver the delerminations are made in ihe order 1,
2, 3, ete, The principle of randomisation may be Satﬁﬁ}d by baving
20 similar eards, writing 4 on 10 and B on 10, shufiing them, drawing
them one at a time, and assigning the treatments 'A}‘md B in the above
plan in the order in which the corresponding gatds are drawn. Such st
ar-angement might be )

Observer I A B ,gﬁ":‘A B B
Ohserver II B 40 B B A B

Observer 111 B.B 4 A4 A B 4

This satisfics the condition~gf randomness whether or not there are

observer differences or fénds for the observers, whether they use the
same or different bateles of raw material, o¥ whether or not some ob-
servers change thg @pparatus or raw material part way through t'he
experiment . \’\"l{ttéver the pattern of any uncontrolled variation, its
offect on the eefparison between A and B s broken up by the ran-
domising proedss, and the ¢ test leads to a valid inference about the
relative effect of the two treatments, provided that it 3s merely & Shub o
differnee added to the uncontrolled variations. It is a matter partly

tebhinieal knowledge to decide for what divisions of the experimental
field the cxperimental conditions can be changed from 4 to B- Some-
times the change can be made only by using different machines; some-
times the same machine can be changed ab different times from A 1?0 B
and vice-versa (see, for oxample, the weaving experiment deseribed
near Tahle XXVI, p. 139).

The need for randomisation is fairly easy
sometimes overlooked in the stress of prac
example, that treatments A and B represent two s

to understand, hut it is

tical life. Suppose ’for
ettings of 2 machine,
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N
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that it takes considerable time and trouble to change the setting, and
that the determinations are to be made on one machine consecutively
in time. The experimenter will probably almost instinctively reject, the
arrangement,

AAAAAAAAAABBBHBBBBBB
for the 20 determinations, but he will need more strength of mind to
Q"

AAA_A*ABBBBBBBBBB.AA\A"AA
A A BB AABBAA4 BB A AB'BAYABE

Such should be adapted only if one can be sure that tllgz’.,\-"eiriation along
the series is itself random. We shall see luter, hos'ever, that designs
of these types can be randomised, R4

The other desirable feature, which makes the ordinary inference from
the ¢ test substantially valid even if the creop variation differs for the
two series, is that there should be the s r’ne\.number of observations in
each. It is & matter of minor convendépye in caleulating averages that
the nuinber should be a multiple of §.8r 10,
Economy ' )

Feonomy ean sometimes, be achieved by arranging for some of the
uncontrolled variation t@"affect the two treatments A and 53 equally, so
that it has no effectsom the comparison. This is exemplified by the
determinations ofSfat™n ment in Table VII (p. 90, where the stand-
ard error of theNdifference between the results of two methods of fat
analysis for 20 pairs of determinations was reduced from 2.89 to 0.146
by elimins{in'g the variation between meats from the comparison. The
conditipn ‘eof randomness is satisfied by allowing chauce (e.g., by the
tossield coin) to decide which portion of each meat shall be allocated
fon ggth kind of fat analysis,

("It is convenient to express the relative sconomy of two arrangements

) by the ratio of the squares of the standard crrors of the mean difference
for a given number of observations, perhaps multiplied by 100 to give
a pereentage. It follows from the formula for standard error that this
ratio is the same as the ratio of the numbers of obscrvations nceessary
for a given standard crror, and, if the cost of an investigation is propor-
tional to the number of observations, this ratio is the ratio of the costs
associated with the two arrangements for 4 given precision. Thus, for
the meats this ratio is 2.8¢%:0.1467 — 100:0.25, and 25 pairs of tests
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by the paired arrangement give as good precision as 10,000 by the
randomn arrangement.

This is true, however, only when the number of observations is large,
say more than 20 per serics, and the magnitude of the standard error
slone matters. When the number s small, the degrees of freedom on
which the error variance is estimated also affcets the precision. The
“naired” arrangement of an experiment halves these degrees of free-
dom, and, unless the corresponding reduetion in error variance is large »
enough at least to off-set this, the unrestricted random narra.ngerncnt\is
more profitable.  Suppose, for example, that there are 8 observations
per serics; then for the random arrangement there are 14 degfees of
freedom and ¢ = 2.14 lies on the 0.05 level of significance; forsthe paired
arrangement, there are 7 degrees and I = 2 36 les on the I}.Q5 level. In
arder 0 make the same difference betwecn means significant at this
leve!, therefore, the paired arrangement would need to reduce the
standard crror in the ratio of 2.36 to 2.14, or':l..\I\io 1. Only if the
reduction were greater would the paired a(r@qgément be preferable.
Other numbers of observations and othet Nevels of significance give
other results for this kind of caleulationsy 3

Somctimes there are variations tat ean either be treated as random
and “averaged out” by doing,mafljf tests, or be eliminated by making
some “control” determinations and then we want to know which is the
more economical. The §dllowing experience iflustrates this.

Tt was desired to obbain comparative measures of the “openncss” of
different. lots of cot{dﬁ'ﬁbre, originating {rom the same bale but having
been subjected o different processing treatments, The aim was to
assess the cffeet/of the procéssing treatment. The megsurement -
volved talj&g"from the lot 20 grams of cotton {rcferred to 8s a “hand-
ful”}, patting it into an apparatus, and measuring the resistance to air
ﬂ‘{}‘f.; “Phch result in the first and fourth columns of Table XXXIII
SQGD‘S The resistance of onc handiul, in arbitrary units, and each set of
5,8, or 7 resulis printed in a group In the table refers to on€ lot, the
seven groups referring to seven lots of eotton. ‘

For any one lot the resistance varics becausc of variations from one
handful to another in openness and other properties of the cotton, and
of errors of determpination. The variations in resistance may be re-
garded as random, and thear effect may be reduced by taking 8 MR
for cach lot, the preecision with which this mean estimates the true
resistance for the lot being specified by the standerd error. A pooled
estimate of the error varianee for this standard error 18 the within-lot
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varianee of the results in the firsi and fourth coluanins of Table XXX,
it is 49.4 units (based on 40 — 7 = 33 degrrees of freedom).

TABLE XXXI1i1

Resistance oF Hanorurs or Cortox Frank 10 A Frow

Resistance | Control | Difference [ Rosistanie Cantrol | Difference
_ _ ' N
3 \ a >
30 43 13 I R B TS N
33 47 14 25 35 . JON
25 1 8 11 31 40 4
16 26 19 0 50 |0
23 34 1 21 31,08 e
30 43 13 A\
27 39 12 26 3 | 5
22 [\ 0
50 59 9 2N 19
40 45 5 \"Y| ss . g9
26 32 6 Nes) 37 g9
32 as 6 O
29 27 TN 32 8
26 33 Teal 25 32 7
30 3y RN 25 34 9
D TP 50 10
4 57 M\ 16 22 30 8
80 “onT g
26 14 37 40 3
26 < %0\ - I 40 8
22 { har 15 39 44 5
SN 17 3 48 12
N 26 33 7
"h N/ —

I;,};é possible, after testing the resistance of a handful, to reduee it
todistate of virtually perfect openness by carding and to messure 1{s

\H‘psistance in that state; results for the handfuls already referved to are

in the eolumns of Table XX XTII headed “Coutrol.” Vuriations in the
control values for any onc lot arc dye to errors and in the propertics
other than openncss, and the “Diffcrences” in Table XXXIII arc &
measure of openness, freed from the cffects of the othor propertics, since
these properties are common to the two determinations on cach hand-
ful, but not from the effects of erros, The mean differcnee for any lot
is a measure of the true openness, and the within-lot variance of the

_differences may be used to compute the standard error. The pooled
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cstimate of this variance is 3.07 units. It is much less than that for the
erude resistance beeause variations in “other properties” no longer con-
tribute o the error in the determination of openness. Roughly, in
order to obtain the same precision, it requires 16 times as many hand-
tuls if determinations of crude resistance alone are made as if control
values ave also determined and differences are measured; and since the
use of controls in this instance only incrcases the cost four- or five-
fold, it is clearly economical. Had the cost with controls been equal
to or slightly more than 16 times that without, the physicist would .
probably still prefer to use controls; he would feel instinetively that it
i better to clininate the offect of “other properties” than to reducé it
by statistical averaging, and I would not attempt to persuaelé\hirh
otherwise. Dut, had the method with controls been much less.épohemi-
eal than that without, its use would be hard to justify. “‘ ’

In Table XXXIII, the simple difference between thedwd determina-
tiong for each handful rather than the percentage O gome other index
has been used. When the control and resistap g walues arc plotted
azainst each other, they form a chart that doés mot differ appreciably
from the type of Tig. 17(a) (p. 100}, and $le simple difference is ade-
quate. The adoption of pooled estin}a,tés'of the error variances is
justified on the grounds that there gsjnb" obvious objection to it from
either an examination of the data ovod consideration of the physies of
the test, and that slight hcterqgenéity of variability would not invali-
date the conclusions. If thefe were any interest in investigating the
significance of the lot c}iﬁéﬁences in Tuble XXXIII, a full anakysis of
varance could be dopéhon the diffcrences, The economy of using
aontrols was made pésdible only because the first resistance determina-
tion and the conprofdest could be done on the same handful,

"

When safpling is in clusters {e.g,, when there are several leas of
yarn ])t}lz.‘{?'bp and many cops, Table ¥, p. 2973, there arises the question
of thesfost economical number of individuals per cluster. If the cost
iswlie.sume for a given number of individuals irrespective of whether
they are in many or few clusters, it is best to have en¢ individual per
cluster. But often this is not the case, as the following cxample will
showr,

1t has been found * that in ecrtain weaving experiments made to
determine the mean warp breakage rate of warps of cotton yarn pre-
pared under various conditions, when the fotal length woven is divided

* Shirley Tnstifule Memais, Vol 18, 1941, p. 109, or Journal of the Teztile

Institute, Vol. 32, 1941, p. T209.
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into “pleces” and “sub-picces,” the error varianee of the mean breakage
rate per piece is
52

V= -+ 0136
T

where ¢% is the variance hetween sub-pleces within a piece, n is the -
number of sub-pieces per piece, and 0.13¢° is the carrected betwoen-
piece variance (scc p. 112). This corrected between-picee variance is
independent of the number of sub-picees per picee; the ralis 0, 1\was
determined ewpirically, If there are m pieces, and hencc gy sub-
pieces, per warp, the error variance of the mean breaka;géuy\ate per
warp is QO

N/
%

v 1 0.13 N

— = (_--- -+ —-—-—) o? ' y

m mr o om R
For a given number mn this error variance is\egst when m is greatest
(e, when n = 1}, and, if therc is no differepee in cost between sub-
pieves from the same piece and those fm@;hifferent pieces, this is the
mast economical arrangement.  Betw@én) éach piece, however, cortain
machine changes have to be made suchthat, if w is the cost of weaving
& sub-picce, the cost of making thehanges is 4. Then the total cost
of wecaving the mn sub-pieccg}g’ﬁd making m changes {counting the
setting-up for the first picce ¥ equivalent to a change) ix

N = mnw + maw

NG . . -
The problem now lﬁd’detcrmmc the value of # which makes V/m a
miimum for a given'C, or ¢ a minimum for a given ¥/m, or, In other
words, which niigimises
N\

o ove 1
e — =we*(rn + -+ .13
. :§... . m n
This};nay be found by differentiating the above cxpression with respeet
M\Lo\ﬁ,’and equating the result to zero, and thus it is found that
N ‘ i
: # o= e
0.13
TFor one particular set of warps, ¢ happens to he about 20 so that the
most ceonomical value of n 1s V154 = 12, approximately.
This example can casily be generalised,  The particular result de-
pends on the ratio of the corrceted between-eluster varianee to that
within clusters (0.13 in the example), and the cost of moving from one.
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cluster to another compared with the cost of taking an extra individual
from the same claster (i in the example). H VC/m is caleulated for
various values of # in the neighbourhood of the most economical value,
it will usually be found to increase only a little from the minimum, so
that it is not impartant to keep very close to the optimum value. Cal-
culations of the kind illustrated serve to show only roughly what the
arrangement should be.

The following is a [ietitious example that 1ustrates some interesting{
points. Let us suppose that the data in Table XXXIV, taken in onder
when reading along the rows, represent consecutive measurements ot
the quality of a product made during & trial run. They may be’some
quality of eonsecutive articles made by a machinc or, the, average
quality of consecutive batches; they may be the qualit gb conseeutive
casts of steel or some other manufactured subst-ancé’;&as opposed to
articles) that is divided into lots; they may be consbettive Intermittent
readings of some instrument that indicates soffe state (eg. the tem-
perfture) of a continuous process; or they ‘m%y”be readings of quality
that are contiguous in space, as when tikenl along a wire or rod. If
they are plotted against the 1116:1511{:@1’%5 number, trends will be ob-

TABLE‘ XXXV

N Rt ——

27 15 16 1302 22 2L 26 20 30 38 3¢
30 41 26488730 27 31 28 17 22 24 25

21 22429N\28 28 31 33 40 28 17 2 29

96 23(3F 20 23 24 25 23 20 24 19 A
20493728 20 19 22 20 2t 14 22 33 3l
22\:,34 18 28 33 25 22 23 27 20 21 20
38713 30 38 20 21 18 40 29 27 17 18
NM21 23 25 29 34 30 22 19 17 25 24. 30
2 & I —

'ﬁ:‘?ll:&\,.’éhowing that the process is out of control.
‘{f Brgument, accept this situation. i
Now suppase that we wish to compare the effects of two experimental
treatments, 4 and B, which alter anly the average quality, and that
the trial data are to be used to decide the best arrangement. We can
not perform an actual experiment with the results of Table XXXIV,
but we can form some idea of what would happen were an experiment
done with another run of a similar produetion.
_ The caleulations will be desceribed at some len
1t helpful to follow them through in full; but, if you find any

M

Let us, for the sake

oth, and you will find
diffienlty
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In doing this, you may skip the details and follow the arguments based
on the results of the caleulations assembled in Table XXXV,

The most elementary arrangement, whieh we shall term arrange-
ment 0, is the purely random one. Then, despite the trends, if the
treattnents do not differ in their effects the difference between the mean
for A and that for B will be no greater than that the randomising
process—ehance—can produce, and the test of significance based on
the standard error leads to correct conclusions. The variance of the
96 readings of Table XXXIV is 39.73, and the error variandg’ {}\he
square of the standard error} of a difference between two meangbasod

on Ny results for each treatment is \ \
11\ 795 AN
0.8+ —)=— 4
No Ny No (¥

Another posgible arrangement, arrangement datnay be arrived at by
dividing the readings into consceutive pairs; 27»15 | 16, 15 | 14,22 |,
ete., and ensuring that both treatments¢appear once in cach pair.
The two patterns 4 B | A B | AN, ete, and B 4 | B A |
B A |, ete, do not satisfy the conditidbn of randommess. The effect
of the trends may be to make the miean of the first readings of the pairs
higher or lower than that of th,efbjécond, and such a bias (which in an-
other run of produetion wouI(’lfbe unknown) would invalidate the test
of significance. The arfmgement A BIB A} A B|B 4|
ete., might coincide w;blk\some pattern in the trends, but if, for each
pair, chance (perhat{mt‘hrough the toss of a coin) decides whether the
order shallbe 4 PB or B A within each pair, the condition of ran-
domness is satihed for the purpose of testing the significance of the
mean differedce. The design for an experiment might turn out to be
A B|AB|B A!A B|B A|B A ete.

The-sighificance of the mean difference would be tested by taking
th‘?diﬁm‘eﬂccs between the members of the pairs, as was done for the

L Jaty Analyses of Table VII (p. 90}, and the crror variance may be
\&éleulated from the differcnces betwecn consceutive readings in Table
XXXIV. In practice the division inte pairs would be either 27, 15 |
16, 15 |, cte., starting with the first reading, or 15, 16 | 15, 14 |, ete,
starting with the second; but sinee the data of Table XXXIV are in
fact the result of the same treatment we may caleulate the error
variance from all differences: 27 — 15 — 12,15 — 16 = —1, ete. There
are 95 differences, and, regarding their true mean as zcro, we caleulate
the variance by squaring them, adding the squares, and dividing the
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sum by 95; the result is 54,12, and the error variance of a mean dif-
ference based on Ny pairs of readings is 54.1/N,. For the same number
of observations arrangement I gives a substantially lower error vari-
ance than arrangement O beeause the large variations between con-
secutive pairs of readings do not contribute to the error of the com-
parison made by arrangement I.

But arrangement I involves a change of treatment for every reading,
and, if the change is troublesome or costly, the arrangement may be
unec?nomical, We could divide the series into groups of 4 and within<
each group distribute the treatments aceording to either the pattern
A A B B o B B A A, thus reducing the proportion, “of
changes to results. To adopt either pattern throughout or to alternate
them would violate the condition of randemness, but to allos the toss
of & coin to decide which shall be the pattern for each sof 6f4 would be
to arrive at a satisfactory arrangement; let us callit arrangement TE

In order to estimate the error variance we might ddlculate the means
of consecutive pairs: 1% (27 + 15), % (16 + 15)¢#%¢., and caleulate the
variance of the consecutive differences bet:wé}n the series of means;
but it is more convenient to deal with the totals: 27415 = 42,
16 + 15 = 31, 36, 47, ete., and to squargthe differences: 42 — 31 =11,
31—~ 36 = —5, 36 — 47 = —11, etl) making an adjustment in the
final division. A second seriesof ‘consecutive pairs can be abtained
from Table XXXIV: 15 + 16(x 31, 15 4 14 = 29, ete,, and this leads
ta a second series of diffeggri&s. This second series is not independent
of the first, and the precigion with which the error variance is estimated
is not much improved by using both instead of cne; but there is some
improvement, and &nce no bias is introdueed it is better to use both.
There are 93 differences between totals of pairs, their mean square is
186.99, an%}iﬁs‘ faust be divided by 2% = 4, because we have dealt with
totals instead of pairs, giving 46.75. If in an experiment there are Na
results for cach treatment there are N2/2 pairs of means, and the error
vazidnpe of the mean differcnce is (46.75 X 2} /N2 = 03.5/Nz. This 1s
father larger than the error variance for arrangement I for the same
number of readings because more of the trend enters into the error of
the comparisons; indeed it is larger than the variance for arrangement
0; but in some cireumstances it may be more economical than either.

In arvangement 0 the probability of a change of treatment between
two consecutive readings is %, and for Ny readings per treatment @NO
altogether) there are therefore No changes on the average (counting
the initia] sctting up as half a change). Ifit coste k times as mt}ch to
make a change as to obtain a reading once the treatment is cstabhshed,
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the total relative cost of obtaining N, readings on each treatment i
(2 + k)N,

In arrangement I there are ¥, pairs, and the probability of a change
between the second reading of one pair and the fivst of the next is 14,
within each pair there'is the certainty of a change. Thus there are
3N1/2 changes on the average (counting the first setting-up as half a
change), and the relative cost is [2 4 (35/2).]N;,

In arrangement I there are No/2 sets of 4 with, on the average,
N2/4 changes between sets and N./2 within, giving 3V./4 changes)and
a total cost of |2 + (3k/4) | N.. O\

For comparing the economy of the three arrangementsZwe need to
caleulate the relative orror variances for the same CDS?,"}IE\"LT it be unit
cost in terms of the cost to obtain a reading after a trezﬁtm‘bnt has been
sct up. For any one arrangement the crror variange $hercases in pro-
portion as the number of readings (and Lencededst) decrcases, so the
relative error variancc for unit cost is the ertwr varianee previously
calenlated multiplied by the relative cos%’;t)}ese vroducis are in the

last column of Table XXXV, N\
TABLE XXXV
\ N . Relative Error
Arrangement } VE]:mrl Rgat-ltve Varianee per
,,,\ AT1ATL e ] . U]llt COSt-
)
\ 79.5
0 Random WO _'\«"2 2+ BNy T9.5(2 + k)
N\ o
O 5d. ar 3k
1 AR | BA ihdomised) ‘%1 (2 + -2—) Ni| 541 (z + E)
' \WV 1 .
\d 03. 3k 3k
I A,«;ﬁj BBAA (randomised) qiﬁ (2 + Z) Na| 935 (z + ;)
=\ Ny
N : 5 3%
LI AAABBB | BBBAAA (random- 1042 (2 + 3—) Na} 104.2 (2 + E)
\ ) ised) Ny 6
5 . 3%
IV AAAABBBB | BEBBA4AA (ran.| 1929 (2 + ﬁ) Ni| 105.9 (2 + ~)
: N. 8 8
dornised) 4

Now it can be secn that the most cconomical arrangement depends
onthe valueof k. Ifl = 0 (i.c., if the change of treatment costs noth-
ing}, arrangement I is more ceonomical than arrangement 0, 68 read-
ings on T giving a= good precision as 100 readin geon 0. YWhen & = 318,
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arrangements 0 and I have the same relative error, and for larger values
of k arrangement 0 1s the more cconomical. If & is less than 7.2, ar-
rangement I is more cconomieal than avrangement 11; if & is greater
than 7.2, arrangement 1T is the more economical. Suppose, for cxample,
that k& = 12. Then the relative error variances for arrangements 0,
I, and 1T respectively are 1113, 1082, and 1028; and the precision given
by 100 readings on the purely random arrangement is given by 97
readings on arrangement I and 92 on IL. In such a case, i there are
only a few readings, arrangement 0 or I may be preferable as givingd
more degrees of ircedom for the determination of the error variange
from the aetual experimental data. \ )

In Table XXXV arc given results for two further arrangerents ex-
tended {rom the lines of those already discussed. It may heQnferesting
and instructive to check the results given there, and to w Kaut relative
error variances for different values of k. The chang"f:s in the error
variance with the pattern of the arrangement in Jausécond column of
Table XXXV depend on the form of the trends imthe original data of
Table XXXIV; the relative costs in the thisd'e Jumn are independent
of the data and depend only on k. O

")

Another aspect of economy arise@when the severity of a fost 18
susceptible of adjustment. For eXample, the stability of the weit or
filling package in weaving is .ii’npn“rtant (i.e., its ability to withstand
the forces set up by the acgel‘eratinns and retardations it undergoes—
ef. p. 153), and onc medgrd is the propertion of packages that disin-
tegrate under a given force. At what forec should this be measured in
order to determine, Hgther two treatments of the package affect stabil-
ity? Ifina preJ\im‘lnary trial with two typical treatments the test is
made with sexerad values of the force, it will be found that as the forcc
changes so~de”la) the difference in mean gtability for the two treat-
ments apgd (b) the standard error of that difference for a given number
Of’ghsmﬁ'ations‘ The mest economical force is that for which the ratio

(@) to (b} is the larpest. It is technically important, of course, that
the"force shall be in the region of those operating in practicc 0 that
the practically important phenomenon is being studied.

Two kinds of knowledge are required to arrive at the most economi-
cal arrangements: ctatistical and technical. The statistical knowledge
i the error variance for different arrangements, which may be obtained
f%’gm preliminary experiments or observations under uniform condi-
tions, although sometimes an actual experiment with two treatments
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can give information that provides a guide for arranging further ex-
periments. Technieal knowledge can help in suggesting wlere varia-
tion is likely to lic, and what arrangements are worth investigating.
The purely tcchnical information is the relative eosts of performing
different parts of an experiment: of introducing a “control” in Table
XXXIII, of ehanging pieces in the weaving example of page 165, and
of changing from treatment A to B in the example connected with
Table XXXIV. This information need not be very sccurate. It\u=e
is fo find the most economical arrangement, and against any ecqhomy
that is achieved by good de51gn must be set the cost of obmlmng the
necessary information—to give a complete ealculation ofzegst that in-
cludes both factors defeats me! Moreover, the most, LLODUmIC&.} ar-
rangement 1s not usually much better than ilhoses that are near it;
little is gained by hitting the mark exactly. In ami particular instance
it is worth while going into the question thoroughly only if much ex-
perimental work is to be done in the samesfield; but, at the least, a
knowledge of the principles of cxperime cﬁ‘demgn plus some experi-
ence, plus general knowledge of the heldKf investigation, usually helps
the experimenter at least to avmd adoptmg the least cconomical
arrangements, o

The Number of Observat:iqgéi; )

The statistics behind the determination of the number of observa-
tions or scale of expcr'}nentatlon necessary for a given precision has
been dealt with igClapter 8 (p. 87). Since we can not hope to do
better than glvq rough ideas of the necessary sealc, there is no point in
attempting tofhe precise. For most purposes the number of observa-
tions should educe the standard error of the difference to about the
maximuri{érror that can be tolerated, divided by 2 or 2.5. 1f this
maxi \rum tolerable ervor is chosen, and the error variance per observa-
thn for the arrangement decided upon is known, it is casy to calculate
Alles number of observations. Thus, for the experiment on the process
-~ Nof Table XXXIV we might deeide that the maximum tolerable error in
the difference between the means for two treatments js 4.0, so that the
standard error should not be more than 4 = 2.5 == 1.6. If we choose to
follow arrangement IT {Table XXXYV), the value of Ny should be
93.5/1.6° {i.c, belween 36 and 37}. It would be wisc to have 40 pairs
of observations,

Atterapls have been made to make this kind of determination more
precise by using a ratio based on the £ distribution instead of the simple
ratio of 2 or 2.5, and even by using confidence limits for the error



MULTL-TREATMENT PXPERIMENTS 175

variance when that is estimater] Trom a Tinited anount of data, but T

think that these attewpis have not led to improvements of practical
significance.
The error varianee per uheervation must be known in advance. A

- yalue may be known froum previeus general experience in the field of
enquiry, or one may he obiuined fram a special investigation. A good
method is to deo the experiment on i sizeuble, hut inadequate, seule and
use the resulis to determine the error varianee, and hence the necessury
number of observations. Then the experiment can he continued until
the required number of readings 1s available in total, and all of thempn
can be used in ohtaining the final result, When extended, this prng:l.fc?%".\
leads to the applieation of the “requential iden to expm'imentgltiun,
according to which the experiment is done in a number of st@ﬁé’s}; and
at each stage all the data so far obtuined ave used to (!etnrgi{rkz’whcther
suffieient preeision s attamned; at the required point the’ experiment
ceases. Theoretical work is being done on this subjeety wnd it is likely
that systematic procedures will be developed whi f{ #an be applicd by
any experimenter even wilhout complete undt:t’é:tanding of the under-
lying statistical theory. W W

®
&G Y

Multi-treatment Experiments oW

The following cxample, whieh is talkten from Statistical Mefhods m
Indusiry, illustrates o series QKEtztnclal‘d experimental arrangements
that are much used when theré.dre more than two treatments.

Table XXXV gives the\_fleld points of specimens taken from 36
steel disce. "There wereyB-Angots, and from cach ingot the first 6 discs
were taken in order{ pi¥ing the orders 1 to 6 in Table XXXVI. The
data are in the tv{&fﬁctor bagie form for the analysis of variance; the
row of order mleans shows a tendency for the later orders to give higher
yield pointg, snd there are cven greater variations between the ingot
meanj%i altough they follow no pattern. An analysis of the variance
sho(s the order and ingot effects to be statistically significant.

No¥ let, us suppose that we have in mind an experiment ot 4 similar
set of dises in which there are six treatments: I, II, IfL, IV, v, and VI,
and that it is technically possible to allocate the treatments to the discs.
W.lthout restriction (the treatments would have to be varied after the
tilscs ‘had been cut from the ingots). We may investigate the errors
;.Lssﬂclat-ed with various arrangements by superimposing six “dunmy”

reatments on the data of Table XXXV1; the differences between the
dummy treatment means will then show the errors of the comparisons.



11 PLANNING AN INVESTIGATION

TABLE XXXVI

YiELo Poinr (Toxs PER Squike Inch)

Order of Dise
Ingot } Mean
1 2 3 4 5 6
N\
A4 "21.2 1210 |20.0 [208 {202 [21.2 |2038 ®
B 1204 1206 |22.0 | 21.6 [22.6 |22.8 & 20%7)
¢ 206 |20.4 |21.2 [21.2 |21.4 |23.8 2}3.49
D 228 | 22.8 1220 [22.8 |923.2 129 8\ a8.73
B 1208 |208 | 228 [23.2 |226 238 4 22.23
F 21.4 120.4 |20.6 |20.8 |22.9 \2232 21.97
Mean | 21.20 | 21.00 | 21.43 | 21.73 | 22808V 22,63 | 21.67
.\\J

Randomisation is as important for bl‘(}}ﬁdtﬂ’lLHTS as for two, and a
purely random arrangement may be ade Iy having G siniilar tickets
for each treatment, writing the .corrospondm« treatmient number on
each ticket, mixing the ticketsadi*a bag and withdrawing them one at
a time, entering the tre‘ltmmt‘ numbers in Table XXXVI above the
readings in order. One sdch arrangement is in Table XXXVII, which

®)
87 TABLE XXXVII

RanDox ARRANGEMENT OF TREATMENTS | 10 VI, Axp Muax Yigip PoINTs
3 3

N ’:\ Order Treat
\:w’ Ingot e L. Mesn

.s\ 1 o 3 4 5 6 e

NS

'"\} N 4 _ I III Iv VI I vI I 21.17
\ B V VI IV I 11 101 I | 22.43
C v I I Vv vi 11 111 22,40
D VI Iv v II 11 I IV 21.37
E v I v 11 11 1 \4 21.40
F V VvV I VI v 11 VI | 21.27

should be superimposed on Table XXXVI. Thus, the first disc of ingot
4 has assigned to it treatment 1 and the yield point is 21.2; the second
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dise from ingot 4 has treatment IIT and the yield point is 21.0; and so
on. If the yield points for the treatments arc collected and the average
for each iz ealeulated, the results are as shown in the last two columns
of Table XXXVII, The randomising process has ensured that, despite
the order and ingot effects, the differences between the {reatment means
are due to chance, and the usual test based on a single-factor basic
analysis of variance (trcatments, 5 degrees of freedom; error, 30 de-
grces) would show that they are statistically insignificant. These dif-
ferences are an indication of the errors with whieh any real treatment; '
effects would be estimated, and as a rongh measure we may note tlmt
the means range from 21.17 to 22.43, giving a largest difference 0(1 2%
due to errors alone.

All the sources of the variations in Table XXXVI contubute %o these
errors, but we can eliminate the ingot effect from the eqmpansons by
cnsuring that cach treatment is assoclated equallgSgith eaeh ingot.
Within cach ingot the discs must be distributed\at random. This
time we have 6 tickets, one for cach treatment 4 after shuffling them
we draw them one at a time and assign thé\{reatments in the order of
drawing to the six orders of ingot A; one Gueh draw gave III IV 1I
¥I I V. Then the process may be fepeated with the same tickets
guccessively for the other ingots. Fhe result of such a seb of draws is
in T'able h)&XVIH and, if tlm i superimposed on Table XXXVI, the
dummy treatment means apé us given in the last column of Table
XXXVIIL The errors no® p\ruduce less variation in the dummy treat-

\\
() TABLE XXXVII

Raspomisep Brocg &a.amcrubw oF TrEaTMENTS I 10 VI, aND MEAN YIELD
{2 Pownts (Toxvs per SQUARJ:. [NCH)

£
" \ N Order of Dise
N Treat-
_ (NTheot — mr::lt- Mesn
\ ) 1 2 3 4 5 6
4 Ir | 1v I Vi H v 1 21,557
B II1 I i Vi v v I | 21.50
c vl v 11 | I 1 v 1if | 21.30
Do I | 1| Vi 1r v v v | 22.%7
B 111 vl I v | I v v 21.87
F 11 II Y v 1 Vi VI | 21.33
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ment means, the range being from 21.30 to 22.37, with g largest dif-
ference of 1.07. This iz called the randomised blmﬁv arrangement, be-
cause the experimental material is divided into blocks (in this case sets
of 6 discs from the same ingot), and the treatments are distributed ab
random within the block,

It is possible also to eliminate from the crrovs the order effect by
adopting the Latin square arrangement, according to which each treat-
ment oceurs once in eaeh row and onee in each colunm, but otherwise
at random. This may be achieved by bhaving 6 tickets as befor ex{md
entering each treatment number as it is drawn, filling up the Teavs in
order, but moving & number on one place (or twe if m,(-cwaf\} if it
comes into a column already occupied by that trealinent CTF this pro-
cedure is followed, it will usually be found impossible m thc‘ later rows
o avoid having the same treatinent twice in a cniumn and a little

“juggling” may be necessary: but it does not mat‘fm much how this is
done, and very few adjustments suffice. ThodWre standard w ays of
arriving ab Latin squares, but it is hardly sopth while mastering them
unless a ot of experiments are to be ma ) It is easicr, and i most
industrial experiments good enough, ta Start with a systomatie Latin
square in which all the tr{,‘itments of any one number veeur aleng the
diagonals; A\

[I ;’i{‘i IV v ¥l

VI B0 I vV
'\ VI I II I IV
W Vv I 11 111
i A S S S ¢

II I v v VI I

and to dis hute the order numbers randomily among the cohmnns {or
rows) ami‘the ingot letiers randomly among the rows ror cohmims).
For ceaniple, the columns might be allocated to orders 1,3,5,2,8 and
4 and the rows to ingots B, A, F,C,E, and D, in thosc sequences; ami
nh;en the above arrangement is eor respondingly rearranged, the resulb

15 as shown in Table XXXIX.

When Table XXXIX s superimposed on Table XX XVI, the treat-
ment means are as shown in the last colnnm of Table NNXNIN. 1t is
obvious that their differences are unaffected by order or ingot varia-
tions, and the errors of the comparisons are further reduecd, the largest
differenee being 22,03 — 2140 = 0.63. In an actual cxperitnent the
significance of the treatment means would be tested Ly a three-factor
basie analysis of variance, and such an analysls performed on Tables

'"\
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TABLE XXXIX

LATIN SQUARE ARRANGEMENT OF TREATMENTS I 10 VI, anp Meax Yizmp Pomnts
{Tons PR Squark Incr)

Order of Disc
Treat-
ment,

Ingot Mean

A VI | I I v Y 121,50 A
B 1 iv I { vi | III v I | 22.03 ™
A 1| vim ! vi{ 1| nr|ze8)
B 11 v | 111 1] 1v | VI v | 2153

E | UL VI | IV | V¥ 1 V /h21.93

F ¥ 11 VI v 1| X yg:\i .40

i

XXXVI and XXXIX would lead to the vexdict “not statistically
significant.” W~V

The ahove investigation of dummy thetment means may be en-
lghtening to the beginner, but it is,hot” the best statistical way of
investigating the relative advantag@'of the methods. The maximum
difference is 8 poor measure of e_:ffﬁ;r, and the particular results depend
on the particular arrangements® the randomisation happeus te have
produced for Tables XXXV} to XXXIX. Indeed, some particular
Latin square arrangeméhts appear to be worse than particular ran-
domised block or sandom arrangements; the relative merits of the
three, types appeagenly on the average when many experiment:s are
done in the ficld™\ ¥ e obtain better measures by analysing the variance
of Table XX®VT. This is done in Table XL. .

For thé\éu rely random arrangement the error variance per fest is the
mean sfuare in the “Total” row of Table XI. {here, for once, We are
intpr@st’éd in the “Total” mean square}; it s 1.10. Tf the ingot ‘effec-t
#\¢lninated, the error variance per test is the residual of a smg_le»

étor analysis and is the mean square corresponding to residual (_1}
in Table XI. (viz: 0.78). The residual of a two-factor analysis,
residual (2) in Table XL, estimates the error variance per test of 2
comparison between treatments for the Latin squarc arrangement of
an experiment; it is 0.50. The relative economy of the ti.lree arrange-
ments can be expressed by saying that, in order to achieve the pre-
eision of comparison given by 100 “repeats” on the ‘purely random
arrangement, there need to be 71 “pepeats” in randomised blocks and



178 PFLANNING AN INVERTIGATION

TABLE XL

ANaL¥sis or Vantance or Dars or TabLe

A Sum of Degress of Mean
Souree of Variation N

Squares ¢ Freedom Square

Ingots 15,365 5 + 3.07

Orders | 10.739 ’ 3 2450\
Residual (7)) | 23.287 30 0.781
| Rosicual (23 12,548 | ] 25 - 40,50
Total 38.652 a5 1.10

$°¢

N
43 In Latin squares, These eonclusions do not, o'f.c\)m'se. apply exactly

to any new experiments in this ficld becausestie cstimates of variance
in Table XL are themselves subject to e1‘1‘p{\.:

It is not essential to do a preliminary$rial under uniform conditions
in order to arrive at the estimates B{Merror, Many weaving experi-
ments have been done according o the Latin square arrangement of
Table XVIT {p. 123), and the an:élygcs of variance combined to estimate
the loom, periad, and 1‘csid11a]}'\‘ai:iances‘ The ecmubined results showed
that the loom effect was worth climinating but that the period effeect
was not, and that the fandomised block arrangement was preferable.
The point s that thik piece of information on experimental techuigue
was obtained durifig'the course of actual experiments,

Usually it i.s'xjﬂt advisable to eliminate an effect unless it is sub-
stantial, Iy a0’ actual experiment, the error varianee in the random
m'mngcm,tjiitvof SIX treatments in 26 places is estimated on 30 degrees
of freedont, in the randomised block arrangement on 25 degrecs, and
in th&atin square arrangement on 20 degrees; and these reduetions in
degvees of freedom need to be accompaniod by sufficient reductions in

...sft.,h‘ﬂ error variance fo justify the Jater arrangements.  Apart from this,

N there is usually no objection to these arrangements where they are
teehnically feasible: the Latin square iz ag easy to organize as the
purely random arangement, unless there are many treatments.

In the random arrangement the number of replicates need not be
the same for each treatment. Iy the randomised bloek arrangement it
may be any mumber provided it is the samc for eaeh treatment; but
the block must be laree enough to eontain one of each treatment. In
the Latin square artangement the number of replicates per treatment
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must equal the number of treatments. These limitations gometimes
make the randomised bloek arrangement unsuitable and vsually make
_ the Latin square arrangement unsuitable when there are many treat-
ments, say more than six ar seven.

For experimentation in the agricultural and related fields, there are
additional arrangements that are useful in a variety of special cireum-
stances, especially where there are more trestments than are suitable
for the above arrangements. As I have not had experience, direct or
indirect, of their application to teehnical experiments 1 do not proposg’
to deal with them here. There is scope for some pioneer work_in
developing Turther methods for technieal experimentation. R\,

One fairly complicated design, which in agriculture would bé, termed
a split-plot. design, is exemplified in Table XXVI (p. 1399 “In this
experiment, which should be studied again, some of the ir:e'atments (the
sctiings of type I} were varied only between large sect’ig\ms (the looms),
and the comparisons were subjected to larger errors than those for the
other treatments (settings of types IT and 'IIQ;‘ which were varied
within the large sections. The appropriatepess of this kind of arrange-
ment depends on the technieal pnssibilitiesd,'the relative importance of
the different sources of variation, andytlie desirability of making some
types of comparison more accurat&ijﬁ'than others.

All the foregoing discussion odncerns the extension to more eompli-
cated situations of the sim};ﬁe idea of securing cconomy in COMpAaring
the means of two seri s@y ‘associating the readings in related pairs, as
was done in Table V%‘ {p. 90 for the comparison of the methods of
analysing the fatsimdmeats. It is very diffieult to deal generally with
the more cnmpli&s}ted matter of taking into account such things as the
costs of chgmgl}ié the treatments when there are more than t.wo. _

For degiding the number of observations or scale of experimentation
necessary for a given precision I can nob recommend any other proce-
dureSthan that previously outlined for two treatments. The design
fitlust be chosen and the error varianec assogiated with it be estimated;
the largest ervor that can be tolerated in the comparison between any
two treatments must be deeided on; and then the number of observa-
tions can be caleulated in the way deseribed.

Economy in the Analysis of Variance

. urally occurring variation eorrected
question of economy arise(s. For
d variances of lea weights of cotton

When in an investigation of nat
variances are estimated, a new
example, in estimating the correcte
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yarn between and within cops (Table X, p. 111}, is it better to have
many cops with few leas per cop or vice-versa? The question becomes
more complicated when there are two or more factors.

This problem has not, been solved, at Ieast not in a form to give an
answer of direct practical application. Apart from the possibly greater
cost of increasing the number of cops than of increasing the leas per
cop, the best arrangement will depend on the relative magnitude of the
two variances. Commonsense suggests it as a good rough working rule
to have as many cops as practicable, reducing the tests per cof\to 2.
Likewise, in a two-factor analysis, it is usually better to e‘-tllqate the
variances from a large number of tables with few rows and\columnq in
each. A\

N\

7
S

Choice of Variable \\

The choice of the variable for expressing {Be)results is largely a
matter of technical convenience, for u[timat&y, the results have to find
technical application; but statistical quebt\ms do arise. Sometimes,
when the variable that would be chocfm,\bv 4 technicisn is used, the
important assumption of the uniformityof the error variance does not
apply, but it may apply if SOINE, mathematmal transformation of the
data is used. Thus in weaving 'eX.pEI‘lmentb for maeasuring warp break-
age rates the error variancesds proportional to the mean, but, if the
square roots of the observcd breakage rates are taken and the analysis
is performed entirely gn\them, the error varianee is substantially the
same for all \«aluei ofthe meany/breakage rate. Otler transforma-
tions have this ePfect in other cireumstances, and the appropriate trans-
formation, if these is one to “do the trick,” may be found either em-
pirically or frota quasi-theoretical considerations.

W here“\th measured variable is merely an index of some underlying
property.and is not used quantitatively in technical calculations, &
transformation that makes the stutistical aunalysis easicr can be used
v.qthout question. Sometimes the fechnician does, on rcflection, find it
seaswr and more profitable to interpret the results in terms of the trans-
formccl variable than of the raw figures, But this may not always be
so, and then the adoption of the transformation, which involves subordi-
nating technical to statistical convenience, is inadvisable, In other
words, use transformed variables only with understanding and eare.

Planning an Experiment

When an cxperiment is planned in the fullest sense, a number of
fuestions arise that are not strictly or purely statistical, but on w Lich
the statistician usually has to give advice.
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(Ome feature of many techinical experiments is the number of experi-
mental factors that have to be taken into account. Suppose, for
example, that the object 1s to discover the best quantity of a given size
(a size is a mixture of an adhesive, a yarn lubricant, and other in-
eredients) to put on a cotton warp yarn for minimising the warp
breskage rate in weaving. Almost certainly the best quantity will
depend on the type of eloth woven, hut there will be profit in obtaining
a result for cven onc type that is widely woven in industry, and we
may limit the experiment accordingly. But the quality of yarn, the ¢
loom gettings, the relative humidity of the atmosphere in which the
weaving is done are also factors that vary from factory to factoy™in)
the industry and may have important effects. The best quagntify of
size may not be the same at all values of the other factqra,"a;nd it 1g
not enough to control the other factors at one value {01;. I;%val, as it is
generally called) and vary only the quantity of size inGrder to find the
correzponding best quantity. The effect of quantity most be investi-
anted over a range of yarns, loom settings, and/pelative humidities, so
that, for any factory working at given levcjs\af ‘these three, the best
quantity can be specified or, perhaps preferably, the best combination
of guantity, yarn, loom settings, and Qrelgt-i“ve humidity. According to
what may be termed the classicalunetbod of experimentation, only
ane experimental factor would bex varied at a time; the practical needs
of technical experilllentationjcaif for the comprehensive study of a
number of experimental faatbrs at the same time in the so-called
factorial experiment. (Entll the full investigation is complete, 10
answer can be given be the general question, “What 1s the best quantity
of size?” O;

The words exp;;;i?n.ental jactor denote something that is related to
but not quitedhé same as that denoted by the word factor in Chapters
9 and 10‘.\@1'81‘3 factors eorrcspond to the parts into which variance
is anal}‘j‘ée , and in an experiment the treatments en blec are on¢
fuctam,™ Experimental factors represent the parts into which the trest-
fents arc-divided. Thue the six treatments of Table VIII (p- 1.06)
refiresenting different yarns are divided in Table XII (p.‘115} inta
two experimental factors, cottons and twists, the former being at two
levels and the latter at three. The recognition of experimental fact.ors
affects the make-up of the treatments; it does not directly determine
whether the design is random, in randomised blocks, and so on.

Difficulties arise in making factorial experiments. In mwany fields of
enquiry the number of relevant experimental factors tends to be .large,
especially when the quantities of dificrent ingredients of some mixture
are involved: and the number of treatments multiplies accordingly- If
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there are only two levels per experimental factor, the number of treat-
ments 18 27, where f is the number of factors. But two levels are not
always enough. They suffice if there is 2 straight-line relationship be-
tween the value of the level and the value of the effect, but if therc is
& minimum or maxitnum on the curve at least three or four levels are
necessary. In these circumstances the number of treatinents may be-
eome impossibly large, and it may be necessary to make 3 choice be- -
tweoen investigating several expevimental factors, each at two leyels on
the one hand, and investigating few factors, each at scveral le%glz on
the other. ¢ O\

A complex factorial experiment raises difficulties of ifitetpretation.
In the analysis of variance the sum of squares for tm:i;{xﬁcnts is split
up into parts associated with the main effeets :1{1}17\\';11"1})115 first- and
higher-order interactions. There can easily he~alst of between 12
and 20 mean squares, each based on 1 degred\of freedom, and it is
not easy to say which are truly signifieapts Ot is as diffieult to test
the significance of 2 long list of mean sopdafes as of a long list of mean
differences {sece p. 108). Moreover; Yoall but those experienced in
analysing the resuits of complex expépiincnts} it is not easy to compre-
hend fully the meaning of a sen@fid‘~ or higher-order interaetion; and
it is dangerous for the interpretdtion of results to go beyond the easy
compreliension of the chemigts, physicists, and engineers concerned
with the technical aspect§ef an experiment.

The experimental Rtﬁ}t finally adopted will depend en the circum-
stances and on the’Quc'{gmcnt {and even prejudices) of the people in-
volved. Where there are many cqually important experimental factors
about which llttle or nothing is known, and the experimenters can work
in one ficld\ldng enough to master the mysterics of the analysis of
compleg»{&sults, elaborate factorial experitnents may be undertaken
withsshx;cess; and sotne people have had the opportunity to develop an
eXxpértise in this direction that is very valuable. Where the experi-

X mnters have not the time or the will to develop this expertise they
“\Will scek some other way out. They will, on the basis of existing
knowledge, be prepared to regard some experimental factors as having
only secondary importance and to control thery at one level. If the
remaining factors are many, they will divide the field up, investigating,
for cxanple, the effact of quantity of size and varn at one level of loom
settings in onc experiment, at another level in another experiment, and
s0 on, thus advancing knowledge eertainly on small sectors rather than
attempting to advance on a broad front. And if they have to apply
the results obtained at one level of settings to a factory working at &
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sceond level before the sceond level has been investigated, they will
do s0 knowing that life can not be lived without taking risks,

The situation often ealls for compromise between the classical one-
thing-at-a-time experiment and the elaborate factorial experiment. In
arriving at the compromise [ place the full comprehension of the ex-
‘perimental results by the technicians very high in the list of desiderata

A related question, on which we have already touched, is how many
levels of each {actor there should be. No more than are necessary- 6\
define the curve of relationship between the measured guantities—styo
for a straight line, three for & parabola without & maximum orfinigi-
mum in the range covered, four for one with a maximum or, thitimum
funless one can be suve that the curve is aceurately a geeond-order
parabola}, and se an. The fewer the number of levels fofa given tutal
number of cbservations, the larger is the number of rﬁ]’)}}cates per level,
and the easier is it to test the statistical signiﬁcancg of the results.

Anaother question is: Over what range shoulcj:t&z experimental factors
be varied? The short answer is; Over the‘.rh}né"e of practical interest,
having regard to the future as well as the Wesent. Suppose the aim is
to investigate the effect of temperaturg N some process on, say, the
strength of a produet. To investigdge the effect of temperature over
a range of, say, 100°F to 180?‘1'_‘}:511(1 use the results to prediet the
strength at 80°F or 250°F is fo run all the risks of extrapolation. Thesc
are usuaily well-appreciaed. * But if the range of interest is 100°F to
180°F, some people w%ﬂ(i”suggest experimenting over a range of, say,
30°F to 300°F on theground that the effect of temperature is therehy
exagoerated and tl\1e ¥elationship within the narrower range of interest
mare sceuratelf defined. On this argument one would plot strength
against tempefature, fit some form of smooth curve, and use this curve
within th\&u’hge 100°F to 180°F. But the results obtained outside this
range add information on what is happening within the range only if
the téﬁberatﬁre effect is of the same kind, differing only in degree over
t\l{e‘fﬁlll range investigated, and if the form of curve used is suitable,
These eonditions ean not often be known to obtain, and the sugpested
procedure is mot often advisable. Its justification is based on the
same arguments as the justification for extrapolation from results ob-
tained aver a restricted range, but it is not so dangerous as extrapola-
tion. The preferuble eourse, fargely on the grounds of ecunomy, is to
take as many observations as possible just covering the range of prac-

tical interest.
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Conclusion

The applieation of statistical methods to investisations in the tech-
nologieal (and indeed any other) field s based on assumptions, s
subjeet to limitations, and often leatls to uneertain inferences. I i
neeessary to realise all this but not to be bailled by it. Investigators
cant go wrong by tacitly making assumptions that are falze or mis-
applying statistical methods, but if eommonsenee and cxperience are
also applied mistakes will not often be serions.  Many useful ¢daclu-
sions have been reached with the aid of assumptions that, Stretly,
do not apply, and indeed rarely do all the assnumptions an@egnditions
that lie behind the relatively simple mathematical modq!s%a}pply exactly
in practice. Statistical methods and ideas are & helg'sad a guide, and
they have enormously increased our powers of gauiﬁng knowledge, but
they are only part of the mental tools we usn,"‘}\‘Very seldom does &
particular investigation stand on its own, and\we do not often have to
rely only on the results of the statistical analysis in making inferences;
the background of previcus knmvlctlgciu.ﬁd general seientifie insight
should mot be at a discount beeause statistics is uscd—rather they
should gunide the applieation of statistics. So I would counsel the in-
vestigator who is only beginning’,’t(:"use statisties not to be discouraged
by the complexity and limitAtions of the subject. Apply the simpler
designs first and £o to the Tore complex ones only as experience and
comprehension grmv;m{{?arform the statistical analysts without being
unduly concerned, about the assumptions (although the more you un-
derstand them tlge\bctterj , give your general scientific knowledge and
experience fullfgeight in reaching conclusions; and always remember
that you magiiie. wrong,
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